1. Hwang J, Qi L. Quality control in the endoplasmic reticulum: crosstalk between ERAD and UPR pathways.
Trends Biochem Sci 2018;43:593–605.
2. Cybulsky AV. The intersecting roles of endoplasmic reticulum stress, ubiquitin- proteasome system, and autophagy in the pathogenesis of proteinuric kidney disease.
Kidney Int 2013;84:25–33.
5. McLoughlin F, Marshall RS, Ding X, et al. Autophagy plays prominent roles in amino acid, nucleotide, and carbohydrate metabolism during fixed-carbon starvation in maize.
Plant Cell 2020;32:2699–2724.
6. Chen Y, Scarcelli V, Legouis R. Approaches for studying autophagy in Caenorhabditis elegans.
Cells 2017;6:27.
7. Rahman MA, Rhim H. Therapeutic implication of autophagy in neurodegenerative diseases.
BMB Rep 2017;50:345–354.
8. Park JM, Jung CH, Seo M, et al. The ULK1 complex mediates MTORC1 signaling to the autophagy initiation machinery via binding and phosphorylating ATG14.
Autophagy 2016;12:547–564.
9. Beckers J, Tharkeshwar AK, Van Damme P. C9orf72 ALS-FTD: recent evidence for dysregulation of the autophagy-lysosome pathway at multiple levels.
Autophagy 2021;17:3306–3322.
10. Walczak M, Martens S. Dissecting the role of the Atg12-Atg5-Atg16 complex during autophagosome formation.
Autophagy 2013;9:424–425.
12. Li WW, Li J, Bao JK. Microautophagy: lesser-known self-eating.
Cell Mol Life Sci 2012;69:1125–1136.
13. Yang Q, Wang R, Zhu L. Chaperone-mediated autophagy.
Adv Exp Med Biol 2019;1206:435–452.
15. Pedrozo Z, Torrealba N, Fernández C, et al. Cardiomyocyte ryanodine receptor degradation by chaperone-mediated autophagy.
Cardiovasc Res 2013;98:277–285.
17. Danieli A, Martens S. p62-mediated phase separation at the intersection of the ubiquitin-proteasome system and autophagy.
J Cell Sci 2018;131:jcs214304.
18. Promeneur D, Kwon TH, Frøkiaer J, Knepper MA, Nielsen S. Vasopressin V(2)-receptor-dependent regulation of AQP2 expression in Brattleboro rats.
Am J Physiol Renal Physiol 2000;279:F370–F382.
19. Knepper MA, Kwon TH, Nielsen S. Molecular physiology of water balance.
N Engl J Med 2015;372:1349–1358.
20. He J, Yang B. Aquaporins in renal diseases.
Int J Mol Sci 2019;20:366.
21. Jung HJ, Kwon TH. New insights into the transcriptional regulation of aquaporin-2 and the treatment of X-linked hereditary nephrogenic diabetes insipidus.
Kidney Res Clin Pract 2019;38:145–158.
22. Kamsteeg EJ, Hendriks G, Boone M, et al. Short-chain ubiquitination mediates the regulated endocytosis of the aquaporin-2 water channel.
Proc Natl Acad Sci U S A 2006;103:18344–18349.
23. Kwon TH, Nielsen J, Møller HB, Fenton RA, Nielsen S, Frøkiaer J. Aquaporins in the kidney.
Handb Exp Pharmacol 2009;(190):95–132.
24. Hoffert JD, Pisitkun T, Wang G, Shen RF, Knepper MA. Quantitative phosphoproteomics of vasopressin-sensitive renal cells: regulation of aquaporin-2 phosphorylation at two sites.
Proc Natl Acad Sci U S A 2006;103:7159–7164.
25. Hoffert JD, Fenton RA, Moeller HB, et al. Vasopressin-stimulated increase in phosphorylation at Ser269 potentiates plasma membrane retention of aquaporin-2.
J Biol Chem 2008;283:24617–24627.
26. Centrone M, Ranieri M, Di Mise A, et al. AQP2 trafficking in health and diseases: an updated overview.
Int J Biochem Cell Biol 2022;149:106261.
27. Lee YJ, Lee JE, Choi HJ, et al. E3 ubiquitin-protein ligases in rat kidney collecting duct: response to vasopressin stimulation and withdrawal.
Am J Physiol Renal Physiol 2011;301:F883–F896.
28. Trimpert C, Wesche D, de Groot T, et al. NDFIP allows NEDD4/NEDD4L-induced AQP2 ubiquitination and degradation.
PLoS One 2017;12:e0183774.
29. Wu Q, Moeller HB, Stevens DA, et al. CHIP regulates aquaporin-2 quality control and body water homeostasis.
J Am Soc Nephrol 2018;29:936–948.
30. Centrone M, Ranieri M, Di Mise A, et al. AQP2 Abundance is regulated by the E3-ligase CHIP via HSP70.
Cell Physiol Biochem 2017;44:515–531.
31. Tamma G, Robben JH, Trimpert C, Boone M, Deen PM. Regulation of AQP2 localization by S256 and S261 phosphorylation and ubiquitination.
Am J Physiol Cell Physiol 2011;300:C636–C646.
33. Kortenoeven ML, Fenton RA. Renal aquaporins and water balance disorders.
Biochim Biophys Acta 2014;1840:1533–1549.
34. Wang W, Li C, Kwon TH, Knepper MA, Frøkiaer J, Nielsen S. AQP3, p-AQP2, and AQP2 expression is reduced in polyuric rats with hypercalcemia: prevention by cAMP-PDE inhibitors.
Am J Physiol Renal Physiol 2002;283:F1313–F1325.
35. Marples D, Frøkiaer J, Dørup J, Knepper MA, Nielsen S. Hypokalemia-induced downregulation of aquaporin-2 water channel expression in rat kidney medulla and cortex.
J Clin Invest 1996;97:1960–1968.
36. Earm JH, Christensen BM, Frøkiaer J, et al. Decreased aquaporin-2 expression and apical plasma membrane delivery in kidney collecting ducts of polyuric hypercalcemic rats.
J Am Soc Nephrol 1998;9:2181–2193.
37. Khositseth S, Charngkaew K, Boonkrai C, et al. Hypercalcemia induces targeted autophagic degradation of aquaporin-2 at the onset of nephrogenic diabetes insipidus.
Kidney Int 2017;91:1070–1087.
40. Li C, Wang W, Knepper MA, Nielsen S, Frøkiaer J. Downregulation of renal aquaporins in response to unilateral ureteral obstruction.
Am J Physiol Renal Physiol 2003;284:F1066–F1079.
41. Stødkilde L, Nørregaard R, Fenton RA, Wang G, Knepper MA, Frøkiær J. Bilateral ureteral obstruction induces early downregulation and redistribution of AQP2 and phosphorylated AQP2.
Am J Physiol Renal Physiol 2011;301:F226–F235.
42. Somparn P, Boonkrai C, Charngkaew K, et al. Bilateral ureteral obstruction is rapidly accompanied by ER stress and activation of autophagic degradation of IMCD proteins, including AQP2.
Am J Physiol Renal Physiol 2020;318:F135–F147.
43. Marples D, Christensen S, Christensen EI, Ottosen PD, Nielsen S. Lithium-induced downregulation of aquaporin-2 water channel expression in rat kidney medulla.
J Clin Invest 1995;95:1838–1845.
44. Kwon TH, Laursen UH, Marples D, et al. Altered expression of renal AQPs and Na(+) transporters in rats with lithium-induced NDI.
Am J Physiol Renal Physiol 2000;279:F552–F564.
45. Nielsen J, Hoffert JD, Knepper MA, Agre P, Nielsen S, Fenton RA. Proteomic analysis of lithium-induced nephrogenic diabetes insipidus: mechanisms for aquaporin 2 down-regulation and cellular proliferation.
Proc Natl Acad Sci U S A 2008;105:3634–3639.
46. Sung CC, Chen L, Limbutara K, et al. RNA-Seq and protein mass spectrometry in microdissected kidney tubules reveal signaling processes initiating lithium-induced nephrogenic diabetes insipidus.
Kidney Int 2019;96:363–377.
47. Kaiser M, Edemir B. Lithium chloride and GSK3 inhibition reduce aquaporin-2 expression in primary cultured inner medullary collecting duct cells due to independent mechanisms.
Cells 2020;9:1060.
48. Choi HJ, Jang HJ, Park E, et al. Sorting nexin 27 regulates the lysosomal degradation of aquaporin-2 protein in the kidney collecting duct.
Cells 2020;9:1208.
49. Motoi Y, Shimada K, Ishiguro K, Hattori N. Lithium and autophagy.
ACS Chem Neurosci 2014;5:434–442.
50. Zheng P, Lin Y, Wang F, et al. 4-PBA improves lithium-induced nephrogenic diabetes insipidus by attenuating ER stress.
Am J Physiol Renal Physiol 2016;311:F763–F776.
51. Cybulsky AV. Endoplasmic reticulum stress, the unfolded protein response and autophagy in kidney diseases.
Nat Rev Nephrol 2017;13:681–696.
52. Hoorn EJ, Severs D. Autophagy and renal epithelial transport: eat to survive.
Kidney Int 2017;91:1003–1005.
53. Du Y, Qian Y, Tang X, et al. Chloroquine attenuates lithium-induced NDI and proliferation of renal collecting duct cells.
Am J Physiol Renal Physiol 2020;318:F1199–F1209.
54. Kwon TH, Frøkiaer J, Fernández-Llama P, Knepper MA, Nielsen S. Reduced abundance of aquaporins in rats with bilateral ischemia-induced acute renal failure: prevention by alpha-MSH.
Am J Physiol 1999;277:F413–F427.
55. Gong H, Wang W, Kwon TH, et al. EPO and alpha-MSH prevent ischemia/reperfusion-induced down-regulation of AQPs and sodium transporters in rat kidney.
Kidney Int 2004;66:683–695.
56. Nakagawa S, Nishihara K, Inui K, Masuda S. Involvement of autophagy in the pharmacological effects of the mTOR inhibitor everolimus in acute kidney injury.
Eur J Pharmacol 2012;696:143–154.
57. Lempiäinen J, Finckenberg P, Mervaala EE, Sankari S, Levijoki J, Mervaala EM. Caloric restriction ameliorates kidney ischaemia/reperfusion injury through PGC-1α-eNOS pathway and enhanced autophagy.
Acta Physiol (Oxf) 2013;208:410–421.
58. Liu Q, Kong Y, Guo X, et al. GSK-3β inhibitor TDZD-8 prevents reduction of aquaporin-1 expression via activating autophagy under renal ischemia reperfusion injury.
FASEB J 2021;35:e21809.
60. Rauchman MI, Pullman J, Gullans SR. Induction of molecular chaperones by hyperosmotic stress in mouse inner medullary collecting duct cells.
Am J Physiol 1997;273:F9–F17.
61. Echevarria M, Windhager EE, Tate SS, Frindt G. Cloning and expression of AQP3, a water channel from the medullary collecting duct of rat kidney.
Proc Natl Acad Sci U S A 1994;91:10997–11001.
62. Ishibashi K, Sasaki S, Fushimi K, Yamamoto T, Kuwahara M, Marumo F. Immunolocalization and effect of dehydration on AQP3, a basolateral water channel of kidney collecting ducts.
Am J Physiol 1997;272:F235–F241.
63. Terris J, Ecelbarger CA, Marples D, Knepper MA, Nielsen S. Distribution of aquaporin-4 water channel expression within rat kidney.
Am J Physiol 1995;269:F775–F785.
64. Yasui M, Kwon TH, Knepper MA, Nielsen S, Agre P. Aquaporin-6: an intracellular vesicle water channel protein in renal epithelia.
Proc Natl Acad Sci U S A 1999;96:5808–5813.
65. Nejsum LN, Elkjaer M, Hager H, Frokiaer J, Kwon TH, Nielsen S. Localization of aquaporin-7 in rat and mouse kidney using RT-PCR, immunoblotting, and immunocytochemistry.
Biochem Biophys Res Commun 2000;277:164–170.
67. Tanaka Y, Watari M, Saito T, Morishita Y, Ishibashi K. Enhanced autophagy in polycystic kidneys of AQP11 null mice.
Int J Mol Sci 2016;17:1993.
68. Ishibashi K, Tanaka Y, Morishita Y. The role of mammalian superaquaporins inside the cell: an update.
Biochim Biophys Acta Biomembr 2021;1863:183617.