Supplementary Figure 6. Regional plots of SNPs listed in Table 2 along with their possible association (in LD) with previously reported SNPs known to be associated with kidney-related traits. (A) rs3790638 is in LD with rs117131266, which has been reported to be associated with kidney trait. However, rs117131266 did not show significance in our study. (B) rs77366165 is in LD with rs16856823, which is previously associated with kidney trait. Although rs16856823 showed a more significant p-value than rs77366165, rs16856823 was not validated by log-BUN or eGFRcysC in this study. (C) rs7677847 is in LD with rs28394165, which is previously reported to be associated with kidney traits. Although rs28394165 showed a more significant p-value, it was not validated by log-BUN or eGFRcysC in our study. (D, E) rs17159964 and rs56870952 are in LD with rs78017654 and rs963837, which are reported as kidney trait-associated SNPs. However, none of these SNPs was validated by log-BUN or eGFRcysC in our study. (F) rs572528 is the lead SNP with the highest significance. It is in LD with rs1773028, which is previously associated with kidney traits. (G) rs35494939 was the lead SNP and is in LD with rs35208507 and rs11864909. While rs35208507 was previously reported, it was not validated by log-BUN or eGFRcysC in our study. Additionally, rs11864909 was not significantly associated with eGFR in our study. BUN, blood urine nitrogen; eGFR, estimated glomerular filtration rate calculated using serum creatinine by CKD-EPI equation; eGFRcysC, estimated glomerular filtration rate calculated using serum cystatin C by CKD-EPI equation; LD, linkage disequilibrium; SNP, single nucleotide polymorphism.