1. Wayner DD, Burton GW, Ingold KU, Barclay LR, Locke SJ. The relative contributions of vitamin E, urate, ascorbate and proteins to the total peroxyl radical-trapping antioxidant activity of human blood plasma.
Biochim Biophys Acta 1987;924:408–419.
2. Fabbrini E, Serafini M, Colic Baric I, Hazen SL, Klein S. Effect of plasma uric acid on antioxidant capacity, oxidative stress, and insulin sensitivity in obese subjects.
Diabetes 2014;63:976–981.
3. Sautin YY, Johnson RJ. Uric acid: the oxidant-antioxidant paradox.
Nucleosides Nucleotides Nucleic Acids 2008;27:608–619.
4. Maiuolo J, Oppedisano F, Gratteri S, Muscoli C, Mollace V. Regulation of uric acid metabolism and excretion.
Int J Cardiol 2016;213:8–14.
5. Kanda E, Muneyuki T, Kanno Y, Suwa K, Nakajima K. Uric acid level has a U-shaped association with loss of kidney function in healthy people: a prospective cohort study.
PLoS One 2015;10:e0118031.
6. Estiverne C, Mandal AK, Mount DB. Molecular pathophysiology of uric acid homeostasis.
Semin Nephrol 2020;40:535–549.
7. Halperin Kuhns VL, Woodward OM. Urate transport in health and disease.
Best Pract Res Clin Rheumatol 2021;35:101717.
8. Euser SM, Hofman A, Westendorp RG, Breteler MM. Serum uric acid and cognitive function and dementia.
Brain 2009;132:377–382.
9. Battelli MG, Bortolotti M, Polito L, Bolognesi A. Metabolic syndrome and cancer risk: the role of xanthine oxidoreductase.
Redox Biol 2019;21:101070.
11. Wang H, Zhang H, Sun L, Guo W. Roles of hyperuricemia in metabolic syndrome and cardiac-kidney-vascular system diseases.
Am J Transl Res 2018;10:2749–2763.
13. Otani N, Ouchi M, Misawa K, Hisatome I, Anzai N. Hypouricemia and urate transporters.
Biomedicines 2022;10:652.
14. Hosoyamada M. Hypothetical mechanism of exercise-induced acute kidney injury associated with renal hypouricemia.
Biomedicines 2021;9:1847.
15. Coca SG, Singanamala S, Parikh CR. Chronic kidney disease after acute kidney injury: a systematic review and meta-analysis.
Kidney Int 2012;81:442–448.
16. El-Zoghby ZM, Lieske JC, Foley RN, et al. Urolithiasis and the risk of ESRD.
Clin J Am Soc Nephrol 2012;7:1409–1415.
17. Kang DH, Nakagawa T, Feng L, et al. A role for uric acid in the progression of renal disease.
J Am Soc Nephrol 2002;13:2888–2897.
18. Zhu P, Liu Y, Han L, Xu G, Ran JM. Serum uric acid is associated with incident chronic kidney disease in middle-aged populations: a meta-analysis of 15 cohort studies.
PLoS One 2014;9:e100801.
19. Johnson RJ, Nakagawa T, Jalal D, Sánchez-Lozada LG, Kang DH, Ritz E. Uric acid and chronic kidney disease: which is chasing which?
Nephrol Dial Transplant 2013;28:2221–2228.
21. King C, Lanaspa MA, Jensen T, Tolan DR, Sánchez-Lozada LG, Johnson RJ. Uric acid as a cause of the metabolic syndrome.
Contrib Nephrol 2018;192:88–102.
22. Álvarez-Lario B, Macarrón-Vicente J. Uric acid and evolution.
Rheumatology (Oxford) 2010;49:2010–2015.
23. Wright PA. Nitrogen excretion: three end products, many physiological roles.
J Exp Biol 1995;198:273–281.
24. Enomoto A, Kimura H, Chairoungdua A, et al. Molecular identification of a renal urate anion exchanger that regulates blood urate levels.
Nature 2002;417:447–452.
25. Roch-Ramel F, Guisan B, Schild L. Indirect coupling of urate and p-aminohippurate transport to sodium in human brush-border membrane vesicles.
Am J Physiol 1996;270:F61–F68.
26. Lu Y, Nakanishi T, Tamai I. Functional cooperation of SMCTs and URAT1 for renal reabsorption transport of urate.
Drug Metab Pharmacokinet 2013;28:153–158.
27. Endou H, Anzai N. Urate transport across the apical membrane of renal proximal tubules.
Nucleosides Nucleotides Nucleic Acids 2008;27:578–584.
28. Thangaraju M, Ananth S, Martin PM, et al. c/ebpdelta Null mouse as a model for the double knock-out of slc5a8 and slc5a12 in kidney.
J Biol Chem 2006;281:26769–26773.
29. Xu L, Shi Y, Zhuang S, Liu N. Recent advances on uric acid transporters.
Oncotarget 2017;8:100852–100862.
30. Bruno CM, Pricoco G, Cantone D, Marino E, Bruno F. Tubular handling of uric acid and factors influencing its renal excretion: a short review.
EMJ Nephrol 2016;4:92–97.
31. Ebert K, Ludwig M, Geillinger KE, et al. Reassessment of GLUT7 and GLUT9 as putative fructose and glucose transporters.
J Membr Biol 2017;250:171–182.
32. Vitart V, Rudan I, Hayward C, et al. SLC2A9 is a newly identified urate transporter influencing serum urate concentration, urate excretion and gout.
Nat Genet 2008;40:437–442.
33. Doblado M, Moley KH. Facilitative glucose transporter 9, a unique hexose and urate transporter.
Am J Physiol Endocrinol Metab 2009;297:E831–E835.
34. Preitner F, Bonny O, Laverrière A, et al. Glut9 is a major regulator of urate homeostasis and its genetic inactivation induces hyperuricosuria and urate nephropathy.
Proc Natl Acad Sci U S A 2009;106:15501–15506.
35. van Aubel RA, Smeets PH, Peters JG, Bindels RJ, Russel FG. The MRP4/ABCC4 gene encodes a novel apical organic anion transporter in human kidney proximal tubules: putative efflux pump for urinary cAMP and cGMP.
J Am Soc Nephrol 2002;13:595–603.
36. Eraly SA, Vallon V, Rieg T, et al. Multiple organic anion transporters contribute to net renal excretion of uric acid.
Physiol Genomics 2008;33:180–192.
37. Bakhiya A, Bahn A, Burckhardt G, Wolff N. Human organic anion transporter 3 (hOAT3) can operate as an exchanger and mediate secretory urate flux.
Cell Physiol Biochem 2003;13:249–256.
38. Bhatnagar V, Richard EL, Wu W, et al. Analysis of ABCG2 and other urate transporters in uric acid homeostasis in chronic kidney disease: potential role of remote sensing and signaling.
Clin Kidney J 2016;9:444–453.
39. Huls M, Brown CD, Windass AS, et al. The breast cancer resistance protein transporter ABCG2 is expressed in the human kidney proximal tubule apical membrane.
Kidney Int 2008;73:220–225.
40. Woodward OM, Köttgen A, Coresh J, Boerwinkle E, Guggino WB, Köttgen M. Identification of a urate transporter, ABCG2, with a common functional polymorphism causing gout.
Proc Natl Acad Sci U S A 2009;106:10338–10342.
41. Takada T, Ichida K, Matsuo H, et al. ABCG2 dysfunction increases serum uric acid by decreased intestinal urate excretion.
Nucleosides Nucleotides Nucleic Acids 2014;33:275–281.
42. Hosomi A, Nakanishi T, Fujita T, Tamai I. Extra-renal elimination of uric acid via intestinal efflux transporter BCRP/ABCG2.
PLoS One 2012;7:e30456.
43. Van Aubel RA, Smeets PH, van den Heuvel JJ, Russel FG. Human organic anion transporter MRP4 (ABCC4) is an efflux pump for the purine end metabolite urate with multiple allosteric substrate binding sites.
Am J Physiol Renal Physiol 2005;288:F327–F333.
44. Nigam SK, Bhatnagar V. The systems biology of uric acid transporters: the role of remote sensing and signaling.
Curr Opin Nephrol Hypertens 2018;27:305–313.
45. Jutabha P, Anzai N, Kitamura K, et al. Human sodium phosphate transporter 4 (hNPT4/SLC17A3) as a common renal secretory pathway for drugs and urate.
J Biol Chem 2010;285:35123–35132.
46. Yang B, Xin M, Liang S, et al. New insight into the management of renal excretion and hyperuricemia: potential therapeutic strategies with natural bioactive compounds.
Front Pharmacol 2022;13:1026246.
47. Anzai N, Kanai Y, Endou H. New insights into renal transport of urate.
Curr Opin Rheumatol 2007;19:151–157.
48. Srivastava S, Nakagawa K, He X, et al. Identification of the multivalent PDZ protein PDZK1 as a binding partner of sodium-coupled monocarboxylate transporter SMCT1 (
SLC5A8) and SMCT2 (
SLC5A12).
J Physiol Sci 2019;69:399–408.
49. Miyazaki H, Anzai N, Ekaratanawong S, et al. Modulation of renal apical organic anion transporter 4 function by two PDZ domain-containing proteins.
J Am Soc Nephrol 2005;16:3498–3506.
50. Gisler SM, Pribanic S, Bacic D, et al. PDZK1: I. a major scaffolder in brush borders of proximal tubular cells.
Kidney Int 2003;64:1733–1745.
51. Hoque MT, Cole SP. Down-regulation of Na+/H+ exchanger regulatory factor 1 increases expression and function of multidrug resistance protein 4.
Cancer Res 2008;68:4802–4809.
52. Benn CL, Dua P, Gurrell R, et al. Physiology of hyperuricemia and urate-lowering treatments.
Front Med (Lausanne) 2018;5:160.
53. Levinson DJ, Sorensen LB. Renal handling of uric acid in normal and gouty subject: evidence for a 4-component system.
Ann Rheum Dis 1980;39:173–179.
54. Guggino SE, Aronson PS. Paradoxical effects of pyrazinoate and nicotinate on urate transport in dog renal microvillus membranes.
J Clin Invest 1985;76:543–547.
55. So A, Thorens B. Uric acid transport and disease.
J Clin Invest 2010;120:1791–1799.
56. Xu X, Li C, Zhou P, Jiang T. Uric acid transporters hiding in the intestine.
Pharm Biol 2016;54:3151–3155.
57. Ichida K, Matsuo H, Takada T, et al. Decreased extra-renal urate excretion is a common cause of hyperuricemia.
Nat Commun 2012;3:764.
58. Yano H, Tamura Y, Kobayashi K, Tanemoto M, Uchida S. Uric acid transporter ABCG2 is increased in the intestine of the 5/6 nephrectomy rat model of chronic kidney disease.
Clin Exp Nephrol 2014;18:50–55.
59. Xing SC, Meng DM, Chen Y, et al. Study on the diversity of Bacteroides and Clostridium in patients with primary gout.
Cell Biochem Biophys 2015;71:707–715.
60. Zhang L, Liu J, Jin T, Qin N, Ren X, Xia X. Live and pasteurized Akkermansia muciniphila attenuate hyperuricemia in mice through modulating uric acid metabolism, inflammation, and gut microbiota.
Food Funct 2022;13:12412–12425.
62. Xie QS, Zhang JX, Liu M, et al. Short-chain fatty acids exert opposite effects on the expression and function of p-glycoprotein and breast cancer resistance protein in rat intestine.
Acta Pharmacol Sin 2021;42:470–481.
63. Wang J, Chen Y, Zhong H, et al. The gut microbiota as a target to control hyperuricemia pathogenesis: potential mechanisms and therapeutic strategies.
Crit Rev Food Sci Nutr 2022;62:3979–3989.
65. Ichida K, Hosoyamada M, Kamatani N, et al. Age and origin of the G774A mutation in SLC22A12 causing renal hypouricemia in Japanese.
Clin Genet 2008;74:243–251.
66. Dinour D, Gray NK, Ganon L, et al. Two novel homozygous SLC2A9 mutations cause renal hypouricemia type 2.
Nephrol Dial Transplant 2012;27:1035–1041.
67. Vávra J, Pavelcová K, Mašínová J, et al. Examining the association of rare allelic variants in urate transporters SLC22A11, SLC22A13, and SLC17A1 with hyperuricemia and gout.
Dis Markers 2024;2024:5930566.
68. Sato M, Iwanaga T, Mamada H, et al. Involvement of uric acid transporters in alteration of serum uric acid level by angiotensin II receptor blockers.
Pharm Res 2008;25:639–646.
70. Chiba T, Matsuo H, Kawamura Y, et al. NPT1/SLC17A1 is a renal urate exporter in humans and its common gain-of-function variant decreases the risk of renal underexcretion gout.
Arthritis Rheumatol 2015;67:281–287.
71. Zhang DM, Jiao RQ, Kong LD. High dietary fructose: direct or indirect dangerous factors disturbing tissue and organ functions.
Nutrients 2017;9:335.
72. Park DY, Kim YS, Ryu SH, Jin YS. The association between sedentary behavior, physical activity and hyperuricemia.
Vasc Health Risk Manag 2019;15:291–299.
73. Choi HK, Liu S, Curhan G. Intake of purine-rich foods, protein, and dairy products and relationship to serum levels of uric acid: the Third National Health and Nutrition Examination Survey.
Arthritis Rheum 2005;52:283–289.
74. Cheng S, Shan L, You Z, et al. Dietary patterns, uric acid levels, and hyperuricemia: a systematic review and meta-analysis.
Food Funct 2023;14:7853–7868.
75. Smith ID, Ross LM, Gabaldon JR, et al. The relation of accelerometer-measured physical activity and serum uric acid using the National Health and Nutrition Survey (NHANES) 2003-2004.
Front Sports Act Living 2022;3:775398.
76. Park KY, Kim HJ, Ahn HS, et al. Effects of coffee consumption on serum uric acid: systematic review and meta-analysis.
Semin Arthritis Rheum 2016;45:580–586.
77. Towiwat P, Tangsumranjit A, Ingkaninan K, et al. Effect of caffeinated and decaffeinated coffee on serum uric acid and uric acid clearance, a randomised within-subject experimental study.
Clin Exp Rheumatol 2021;39:1003–1010.
78. Tsushima Y, Nishizawa H, Tochino Y, et al. Uric acid secretion from adipose tissue and its increase in obesity.
J Biol Chem 2013;288:27138–27149.
79. Perez-Ruiz F, Aniel-Quiroga MA, Herrero-Beites AM, Chinchilla SP, Erauskin GG, Merriman T. Renal clearance of uric acid is linked to insulin resistance and lower excretion of sodium in gout patients.
Rheumatol Int 2015;35:1519–1524.
80. Ter Maaten JC, Voorburg A, Heine RJ, Ter Wee PM, Donker AJ, Gans RO. Renal handling of urate and sodium during acute physiological hyperinsulinaemia in healthy subjects.
Clin Sci (Lond) 1997;92:51–58.
81. Muscelli E, Natali A, Bianchi S, et al. Effect of insulin on renal sodium and uric acid handling in essential hypertension.
Am J Hypertens 1996;9:746–752.
82. Toyoki D, Shibata S, Kuribayashi-Okuma E, et al. Insulin stimulates uric acid reabsorption via regulating urate transporter 1 and ATP-binding cassette subfamily G member 2.
Am J Physiol Renal Physiol 2017;313:F826–F834.
83. Nakanishi T, Ohya K, Shimada S, Anzai N, Tamai I. Functional cooperation of URAT1 (SLC22A12) and URATv1 (SLC2A9) in renal reabsorption of urate.
Nephrol Dial Transplant 2013;28:603–611.
84. Johnson RJ, Sanchez Lozada LG, Lanaspa MA, Piani F, Borghi C. Uric acid and chronic kidney disease: still more to do.
Kidney Int Rep 2022;8:229–239.
86. Cappuccio FP, Strazzullo P, Farinaro E, Trevisan M. Uric acid metabolism and tubular sodium handling: results from a population-based study.
JAMA 1993;270:354–359.
87. Forman JP, Scheven L, de Jong PE, Bakker SJ, Curhan GC, Gansevoort RT. Association between sodium intake and change in uric acid, urine albumin excretion, and the risk of developing hypertension.
Circulation 2012;125:3108–3116.
88. Juraschek SP, Choi HK, Tang O, Appel LJ, Miller ER 3rd. Opposing effects of sodium intake on uric acid and blood pressure and their causal implication.
J Am Soc Hypertens 2016;10:939–946.
89. Ferris TF, Gorden P. Effect of angiotensin and norepinephrine upon urate clearance in man.
Am J Med 1968;44:359–365.
91. Maesaka JK, Fishbane S. Regulation of renal urate excretion: a critical review.
Am J Kidney Dis 1998;32:917–933.
92. Han Y, Zhang Y, Cao Y, et al. Exploration of the association between serum uric acid and testosterone in adult males: NHANES 2011-2016.
Transl Androl Urol 2021;10:272–282.
94. Takiue Y, Hosoyamada M, Kimura M, Saito H. The effect of female hormones upon urate transport systems in the mouse kidney.
Nucleosides Nucleotides Nucleic Acids 2011;30:113–119.
95. Schakman O, Gilson H, Thissen JP. Mechanisms of glucocorticoid-induced myopathy.
J Endocrinol 2008;197:1–10.
96. Li G, Han L, Ma R, et al. Glucocorticoids increase renal excretion of urate in mice by downregulating urate transporter 1.
Drug Metab Dispos 2019;47:1343–1351.
97. Giordano N, Santacroce C, Mattii G, Geraci S, Amendola A, Gennari C. Hyperuricemia and gout in thyroid endocrine disorders.
Clin Exp Rheumatol 2001;19:661–665.
98. Kasahara K, Kerby RL, Zhang Q, et al. Gut bacterial metabolism contributes to host global purine homeostasis.
Cell Host Microbe 2023;31:1038–1053.
100. McAdams DeMarco MA, Maynard JW, Baer AN, et al. Diuretic use, increased serum urate levels, and risk of incident gout in a population-based study of adults with hypertension: the Atherosclerosis Risk in Communities cohort study.
Arthritis Rheum 2012;64:121–129.
101. Louthrenoo W, Hongsongkiat S, Kasitanon N, Wangkaew S, Jatuworapruk K. Effect of antituberculous drugs on serum uric acid and urine uric acid excretion.
J Clin Rheumatol 2015;21:346–348.
102. Uetake D, Ohno I, Ichida K, et al. Effect of fenofibrate on uric acid metabolism and urate transporter 1.
Intern Med 2010;49:89–94.
103. Suijk DL, van Baar MJ, van Bommel EJ, et al. SGLT2 inhibition and uric acid excretion in patients with type 2 diabetes and normal kidney function.
Clin J Am Soc Nephrol 2022;17:663–671.
104. Najafi S, Bahrami M, Butler AE, Sahebkar A. The effect of glucagon-like peptide-1 receptor agonists on serum uric acid concentration: a systematic review and meta-analysis.
Br J Clin Pharmacol 2022;88:3627–3637.
106. Mandal AK, Leask MP, Estiverne C, Choi HK, Merriman TR, Mount DB. Genetic and physiological effects of insulin on human urate homeostasis.
Front Physiol 2021;12:713710.