1. Wang L, Xu X, Zhang M, et al. Prevalence of chronic kidney disease in China: results from the sixth China chronic disease and risk factor surveillance.
JAMA Intern Med 2023;183:298–310.
2. Chen L, Yang T, Lu DW, et al. Central role of dysregulation of TGF-β/Smad in CKD progression and potential targets of its treatment.
Biomed Pharmacother 2018;101:670–681.
3. Lan HY. Diverse roles of TGF-β/Smads in renal fibrosis and inflammation.
Int J Biol Sci 2011;7:1056–1067.
4. Schunk SJ, Floege J, Fliser D, Speer T. WNT-β-catenin signalling: a versatile player in kidney injury and repair.
Nat Rev Nephrol 2021;17:172–184.
6. He W, Dai C, Li Y, Zeng G, Monga SP, Liu Y. Wnt/beta-catenin signaling promotes renal interstitial fibrosis.
J Am Soc Nephrol 2009;20:765–776.
8. Murea M, Park JK, Sharma S, et al. Expression of Notch pathway proteins correlates with albuminuria, glomerulosclerosis, and renal function.
Kidney Int 2010;78:514–522.
10. Liu Y, Wang W, Zhang J, Gao S, Xu T, Yin Y. JAK/STAT signaling in diabetic kidney disease.
Front Cell Dev Biol 2023;11:1233259.
11. Chen W, Yuan H, Cao W, et al. Blocking interleukin-6 trans-signaling protects against renal fibrosis by suppressing STAT3 activation.
Theranostics 2019;9:3980–3991.
12. Zhang Y, Jin D, Kang X, et al. Signaling pathways involved in diabetic renal fibrosis.
Front Cell Dev Biol 2021;9:696542.
13. Feng YL, Wang WB, Ning Y, Chen H, Liu P. Small molecules against the origin and activation of myofibroblast for renal interstitial fibrosis therapy.
Biomed Pharmacother 2021;139:111386.
14. Zhao S, Li W, Yu W, et al. Exosomal miR-21 from tubular cells contributes to renal fibrosis by activating fibroblasts via targeting PTEN in obstructed kidneys.
Theranostics 2021;11:8660–8673.
15. Chau BN, Xin C, Hartner J, et al. MicroRNA-21 promotes fibrosis of the kidney by silencing metabolic pathways.
Sci Transl Med 2012;4:121ra18.
17. Liu Y, Bi X, Xiong J, et al. MicroRNA-34a promotes renal fibrosis by downregulation of Klotho in tubular epithelial cells.
Mol Ther 2019;27:1051–1065.
18. Ai K, Zhu X, Kang Y, Li H, Zhang L. miR-130a-3p inhibition protects against renal fibrosis in vitro via the TGF-β1/Smad pathway by targeting SnoN.
Exp Mol Pathol 2020;112:104358.
19. Chung AC, Huang XR, Meng X, Lan HY. miR-192 mediates TGF-beta/Smad3-driven renal fibrosis.
J Am Soc Nephrol 2010;21:1317–1325.
20. Gomez IG, Nakagawa N, Duffield JS. MicroRNAs as novel therapeutic targets to treat kidney injury and fibrosis.
Am J Physiol Renal Physiol 2016;310:F931–F944.
21. Chung AC, Lan HY. MicroRNAs in renal fibrosis.
Front Physiol 2015;6:50.
22. Qin W, Chung AC, Huang XR, et al. TGF-β/Smad3 signaling promotes renal fibrosis by inhibiting miR-29.
J Am Soc Nephrol 2011;22:1462–1474.
23. Zhang JQ, Li YY, Zhang XY, et al. Cellular senescence of renal tubular epithelial cells in renal fibrosis.
Front Endocrinol (Lausanne) 2023;14:1085605.
25. Liang S, Wu YS, Li DY, Tang JX, Liu HF. Autophagy and renal fibrosis.
Aging Dis 2022;13:712–731.
26. Li L, Fu H, Liu Y. The fibrogenic niche in kidney fibrosis: components and mechanisms.
Nat Rev Nephrol 2022;18:545–557.
29. Salazar-Gonzalez H, Zepeda-Hernandez A, Melo Z, Saavedra-Mayorga DE, Echavarria R. Neutrophil extracellular traps in the establishment and progression of renal diseases.
Medicina (Kaunas) 2019;55:431.
30. Ryu S, Shin JW, Kwon S, et al. Siglec-F-expressing neutrophils are essential for creating a profibrotic microenvironment in renal fibrosis.
J Clin Invest 2022;132:e156876.
31. Meng XM. Inflammatory mediators and renal fibrosis.
Adv Exp Med Biol 2019;1165:381–406.
32. Law BM, Wilkinson R, Wang X, et al. Interferon-γ production by tubulointerstitial human CD56bright natural killer cells contributes to renal fibrosis and chronic kidney disease progression.
Kidney Int 2017;92:79–88.
34. Kitamoto K, Machida Y, Uchida J, et al. Effects of liposome clodronate on renal leukocyte populations and renal fibrosis in murine obstructive nephropathy.
J Pharmacol Sci 2009;111:285–292.
35. Summers SA, Gan PY, Dewage L, et al. Mast cell activation and degranulation promotes renal fibrosis in experimental unilateral ureteric obstruction.
Kidney Int 2012;82:676–685.
38. Kanbay M, Demiray A, Afsar B, et al. Role of Klotho in the development of essential hypertension.
Hypertension 2021;77:740–750.
39. Ruiz-Ortega M, Rayego-Mateos S, Lamas S, Ortiz A, Rodrigues-Diez RR. Targeting the progression of chronic kidney disease.
Nat Rev Nephrol 2020;16:269–288.
40. González-Juanatey JR, Górriz JL, Ortiz A, Valle A, Soler MJ, Facila L. Cardiorenal benefits of finerenone: protecting kidney and heart.
Ann Med 2023;55:502–513.
41. Hu H, Zhao X, Jin X, Wang S, Liang W, Cong X. Efficacy and safety of eplerenone treatment for patients with diabetic nephropathy: a meta-analysis.
PLoS One 2022;17:e0265642.
43. Zelniker TA, Braunwald E. Mechanisms of cardiorenal effects of sodium-glucose cotransporter 2 inhibitors: JACC state-of-the-art review.
J Am Coll Cardiol 2020;75:422–434.
45. Dąbek B, Dybiec J, Frąk W, et al. Novel therapeutic approaches in the management of chronic kidney disease.
Biomedicines 2023;11:2746.
46. Sugahara M, Pak WL, Tanaka T, Tang SC, Nangaku M. Update on diagnosis, pathophysiology, and management of diabetic kidney disease.
Nephrology (Carlton) 2021;26:491–500.
47. de Morales AM, Goicoechea M, Verde E, et al. Pentoxifylline, progression of chronic kidney disease (CKD) and cardiovascular mortality: long-term follow-up of a randomized clinical trial.
J Nephrol 2019;32:581–587.
48. Ruiz-Ortega M, Lamas S, Ortiz A. Antifibrotic agents for the management of CKD: a review.
Am J Kidney Dis 2022;80:251–263.
49. Bai X, Nie P, Lou Y, et al. Pirfenidone is a renal protective drug: Mechanisms, signalling pathways, and preclinical evidence.
Eur J Pharmacol 2021;911:174503.
50. Sharma K, Ix JH, Mathew AV, et al. Pirfenidone for diabetic nephropathy.
J Am Soc Nephrol 2011;22:1144–1151.
51. van Leeuwen LL, Leuvenink HG, Olinga P, Ruigrok MJ. Shifting paradigms for suppressing fibrosis in kidney transplants: supplementing perfusion solutions with anti-fibrotic drugs.
Front Med (Lausanne) 2022;8:806774.
53. Bigaeva E, Stribos EG, Mutsaers HA, et al. Inhibition of tyrosine kinase receptor signaling attenuates fibrogenesis in an ex vivo model of human renal fibrosis.
Am J Physiol Renal Physiol 2020;318:F117–F134.
54. Martínez-Díaz I, Martos N, Llorens-Cebrià C, et al. Endothelin receptor antagonists in kidney disease.
Int J Mol Sci 2023;24:3427.
55. Smeijer JD, Kohan DE, Webb DJ, Dhaun N, Heerspink HJ. Endothelin receptor antagonists for the treatment of diabetic and nondiabetic chronic kidney disease.
Curr Opin Nephrol Hypertens 2021;30:456–465.
59. Li SS, Sun Q, Hua MR, et al. Targeting the Wnt/β-catenin signaling pathway as a potential therapeutic strategy in renal tubulointerstitial fibrosis.
Front Pharmacol 2021;12:719880.
60. de Borst MH, Hajhosseiny R, Tamez H, Wenger J, Thadhani R, Goldsmith DJ. Active vitamin D treatment for reduction of residual proteinuria: a systematic review.
J Am Soc Nephrol 2013;24:1863–1871.
61. Maghmomeh AO, El-Gayar AM, El-Karef A, Abdel-Rahman N. Arsenic trioxide and curcumin attenuate cisplatin-induced renal fibrosis in rats through targeting Hedgehog signaling.
Naunyn Schmiedebergs Arch Pharmacol 2020;393:303–313.
62. Wang WJ, Chen XM, Cai GY. Cellular senescence and the senescence-associated secretory phenotype: potential therapeutic targets for renal fibrosis.
Exp Gerontol 2021;151:111403.
63. Singh G, Krishan P. Dietary restriction regimens for fighting kidney disease: insights from rodent studies.
Exp Gerontol 2019;128:110738.
64. Warner G, Hein KZ, Nin V, et al. Food restriction ameliorates the development of polycystic kidney disease.
J Am Soc Nephrol 2016;27:1437–1447.
65. Ruggenenti P, Cortinovis M, Trillini M, et al. Long-term kidney and systemic effects of calorie restriction in overweight or obese type 2 diabetic patients (C.Re.S.O. 2 randomized controlled trial).
Diabetes Res Clin Pract 2022;185:109804.
66. Afsar B, Afsar RE, Copur S, Sag AA, Ortiz A, Kanbay M. The effect of energy restriction on development and progression of chronic kidney disease: review of the current evidence.
Br J Nutr 2021;125:1201–1214.
67. Lee JY, Paik IY, Kim JY. Voluntary exercise reverses immune aging induced by oxidative stress in aging mice.
Exp Gerontol 2019;115:148–154.
68. Denham J, Sellami M. Exercise training increases telomerase reverse transcriptase gene expression and telomerase activity: a systematic review and meta-analysis.
Ageing Res Rev 2021;70:101411.
69. Schmitt EE, Johnson EC, Yusifova M, Bruns DR. The renal molecular clock: broken by aging and restored by exercise.
Am J Physiol Renal Physiol 2019;317:F1087–F1093.
70. Kuro-o M, Matsumura Y, Aizawa H, et al. Mutation of the mouse klotho gene leads to a syndrome resembling aging.
Nature 1997;390:45–51.
71. Abraham CR, Li A. Aging-suppressor Klotho: prospects in diagnostics and therapeutics.
Ageing Res Rev 2022;82:101766.
72. Doi S, Zou Y, Togao O, et al. Klotho inhibits transforming growth factor-beta1 (TGF-beta1) signaling and suppresses renal fibrosis and cancer metastasis in mice.
J Biol Chem 2011;286:8655–8665.
74. Prud’homme GJ, Kurt M, Wang Q. Pathobiology of the Klotho antiaging protein and therapeutic considerations.
Front Aging 2022;3:931331.
75. Franco ML, Beyerstedt S, Rangel ÉB. Klotho and mesenchymal stem cells: a review on cell and gene therapy for chronic kidney disease and acute kidney disease.
Pharmaceutics 2021;14:11.
76. Ruby M, Gifford CC, Pandey R, Raj VS, Sabbisetti VS, Ajay AK. Autophagy as a therapeutic target for chronic kidney disease and the roles of TGF-β1 in autophagy and kidney fibrosis.
Cells 2023;12:412.
77. Lu M, Li H, Liu W, Zhang X, Li L, Zhou H. Curcumin attenuates renal interstitial fibrosis by regulating autophagy and retaining mitochondrial function in unilateral ureteral obstruction rats.
Basic Clin Pharmacol Toxicol 2021;128:594–604.
78. Tan W, Wang Y, Dai H, et al. Potential therapeutic strategies for renal fibrosis: cordyceps and related products.
Front Pharmacol 2022;13:932172.
79. Ma MK, Yung S, Chan TM. mTOR inhibition and kidney diseases.
Transplantation 2018;102(2S Suppl 1):S32–S40.
80. Wang B, Ding W, Zhang M, Li H, Gu Y. Rapamycin attenuates aldosterone-induced tubulointerstitial inflammation and fibrosis.
Cell Physiol Biochem 2015;35:116–125.
81. Gui Y, Dai C. mTOR signaling in kidney diseases.
Kidney360 2020;1:1319–1327.
82. Senior PA, Paty BW, Cockfield SM, Ryan EA, Shapiro AM. Proteinuria developing after clinical islet transplantation resolves with sirolimus withdrawal and increased tacrolimus dosing.
Am J Transplant 2005;5:2318–2323.
83. Tumlin JA, Miller D, Near M, Selvaraj S, Hennigar R, Guasch A. A prospective, open-label trial of sirolimus in the treatment of focal segmental glomerulosclerosis.
Clin J Am Soc Nephrol 2006;1:109–116.
84. Liern M, De Reyes V, Fayad A, Vallejo G. Use of sirolimus in patients with primary steroid-resistant nephrotic syndrome.
Nefrologia 2012;32:321–328.