1. Westreich D, Pence BW, Turner AN. In populo.
Epidemiology 2010;21:152–153.
2. Subrahmanya SV, Shetty DK, Patil V, et al. The role of data science in healthcare advancements: applications, benefits, and future prospects.
Ir J Med Sci 2022;191:1473–1483.
3. Khanna D, Jindal N, Singh H, Rana PS. Applications and challenges in healthcare big data: a strategic review.
Curr Med Imaging 2022;19:27–36.
4. Kaur N, Bhattacharya S, Butte AJ. Big data in nephrology.
Nat Rev Nephrol 2021;17:676–687.
5. Gao J, Liu YY, D’Souza RM, Barabási AL. Target control of complex networks.
Nat Commun 2014;5:5415.
7. Lyu LQ, Cui HY, Shao MY, Fu Y, Zhao RX, Chen QP. Computational medicine: past, present and future.
Chin J Integr Med 2022;28:453–462.
9. Eckardt KU, Coresh J, Devuyst O, et al. Evolving importance of kidney disease: from subspecialty to global health burden.
Lancet 2013;382:158–169.
10. Tuttle KR, Jones CR, Daratha KB, et al. Incidence of chronic kidney disease among adults with diabetes, 2015-2020.
N Engl J Med 2022;387:1430–1431.
11. Bello AK, Levin A, Tonelli M, et al. Assessment of global kidney health care status.
JAMA 2017;317:1864–1881.
13. Li Q, Fan QL, Han QX, et al. Machine learning in nephrology: scratching the surface.
Chin Med J (Engl) 2020;133:687–698.
14. Pappalardo F, Russo G, Tshinanu FM, Viceconti M. In silico clinical trials: concepts and early adoptions.
Brief Bioinform 2019;20:1699–1708.
15. Chan L, Vaid A, Nadkarni GN. Applications of machine learning methods in kidney disease: hope or hype?
Curr Opin Nephrol Hypertens 2020;29:319–326.
16. Shi Y, Hua Y, Wang B, Zhang R, Li X. In silico prediction and insights into the structural basis of drug induced nephrotoxicity.
Front Pharmacol 2021;12:793332.
17. Lim DK, Boyd JH, Thomas E, et al. Prediction models used in the progression of chronic kidney disease: a scoping review.
PLoS One 2022;17:e0271619.
18. Jaimes Campos MA, Andújar I, Keller F, et al. Prognosis and personalized in silico prediction of treatment efficacy in cardiovascular and chronic kidney disease: a proof-of-concept study.
Pharmaceuticals (Basel) 2023;16:1298.
20. Koyner JL, Carey KA, Edelson DP, Churpek MM. The development of a machine learning inpatient acute kidney injury prediction model.
Crit Care Med 2018;46:1070–1077.
21. Santo BA, Rosenberg AZ, Sarder P. Artificial intelligence driven next-generation renal histomorphometry.
Curr Opin Nephrol Hypertens 2020;29:265–272.
22. Li B, Zhao X, Xie W, Hong Z, Zhang Y. Integrative analyses of biomarkers and pathways for diabetic nephropathy.
Front Genet 2023;14:1128136.
23. Bruggeman FJ, Hornberg JJ, Boogerd FC, Westerhoff HV. Introduction to systems biology. In: Baginsky S, Fernie AR, Plant systems biology. Experientia supplementum. Vol. 97. Birkhäuser Basel; 2007.
24. Ishrat R, Ahmed MM, Tazyeen S, et al. In silico integrative approach revealed key microRNAs and associated target genes in cardiorenal syndrome.
Bioinform Biol Insights 2021;15:11779322211027396.
26. Cisek K, Krochmal M, Klein J, Mischak H. The application of multi-omics and systems biology to identify therapeutic targets in chronic kidney disease.
Nephrol Dial Transplant 2016;31:2003–2011.
27. Rhee EP. How omics data can be used in nephrology.
Am J Kidney Dis 2018;72:129–135.
28. Buvall L, Menzies RI, Williams J, et al. Selecting the right therapeutic target for kidney disease.
Front Pharmacol 2022;13:971065.
30. Desbats MA, Lunardi G, Doimo M, Trevisson E, Salviati L. Genetic bases and clinical manifestations of coenzyme Q10 (CoQ 10) deficiency.
J Inherit Metab Dis 2015;38:145–156.
32. Hodgin JB, Nair V, Zhang H, et al. Identification of cross-species shared transcriptional networks of diabetic nephropathy in human and mouse glomeruli.
Diabetes 2013;62:299–308.
33. Tuttle KR, Brosius FC, Adler SG, et al. JAK1/JAK2 inhibition by baricitinib in diabetic kidney disease: results from a Phase 2 randomized controlled clinical trial.
Nephrol Dial Transplant 2018;33:1950–1959.
34. Ju W, Nair V, Smith S, et al. Tissue transcriptome-driven identification of epidermal growth factor as a chronic kidney disease biomarker.
Sci Transl Med 2015;7:316ra193.
35. Azukaitis K, Ju W, Kirchner M, et al. Low levels of urinary epidermal growth factor predict chronic kidney disease progression in children.
Kidney Int 2019;96:214–221.
36. Segarra-Medrano A, Carnicer-Caceres C, Valtierra-Carmeno N, et al. Value of urinary levels of interleukin-6, epidermal growth factor, monocyte chemoattractant protein type1 and transforming growth factor β1 in predicting the extent of fibrosis lesions in kidney biopsies of patients with IgA nephropathy.
Nefrologia 2017;37:531–538.
37. Van JA, Scholey JW, Konvalinka A. Insights into diabetic kidney disease using urinary proteomics and bioinformatics.
J Am Soc Nephrol 2017;28:1050–1061.
38. Sirich TL, Funk BA, Plummer NS, Hostetter TH, Meyer TW. Prominent accumulation in hemodialysis patients of solutes normally cleared by tubular secretion.
J Am Soc Nephrol 2014;25:615–622.
39. Zoccali C, Bode-Böger S, Mallamaci F, et al. Plasma concentration of asymmetrical dimethylarginine and mortality in patients with end-stage renal disease: a prospective study.
Lancet 2001;358:2113–2117.
40. Kurella Tamura M, Chertow GM, Depner TA, et al. Metabolic profiling of impaired cognitive function in patients receiving dialysis.
J Am Soc Nephrol 2016;27:3780–3787.
41. Shafi T, Powe NR, Meyer TW, et al. Trimethylamine N-oxide and cardiovascular events in hemodialysis patients.
J Am Soc Nephrol 2017;28:321–331.
42. Tanaka H, Sirich TL, Plummer NS, Weaver DS, Meyer TW. An enlarged profile of uremic solutes.
PLoS One 2015;10:e0135657.
43. Sato E, Kohno M, Yamamoto M, Fujisawa T, Fujiwara K, Tanaka N. Metabolomic analysis of human plasma from haemodialysis patients.
Eur J Clin Invest 2011;41:241–255.