1. Filler G, Young E, Geier P, Carpenter B, Drukker A, Feber J. Is there really an increase in non-minimal change nephrotic syndrome in children?
Am J Kidney Dis 2003;42:1107–1113.
2. Kiffel J, Rahimzada Y, Trachtman H. Focal segmental glomerulosclerosis and chronic kidney disease in pediatric patients.
Adv Chronic Kidney Dis 2011;18:332–338.
3. De Vriese AS, Sethi S, Nath KA, Glassock RJ, Fervenza FC. Differentiating primary, genetic, and secondary FSGS in adults: a clinicopathologic approach.
J Am Soc Nephrol 2018;29:759–774.
4. Gast C, Pengelly RJ, Lyon M, et al. Collagen (COL4A) mutations are the most frequent mutations underlying adult focal segmental glomerulosclerosis.
Nephrol Dial Transplant 2016;31:961–970.
5. Preston R, Stuart HM, Lennon R. Genetic testing in steroid-resistant nephrotic syndrome: why, who, when and how?
Pediatr Nephrol 2019;34:195–210.
6. Trautmann A, Bodria M, Ozaltin F, et al. Spectrum of steroid-resistant and congenital nephrotic syndrome in children: the PodoNet registry cohort.
Clin J Am Soc Nephrol 2015;10:592–600.
7. Bierzynska A, McCarthy HJ, Soderquest K, et al. Genomic and clinical profiling of a national nephrotic syndrome cohort advocates a precision medicine approach to disease management.
Kidney Int 2017;91:937–947.
8. Yao T, Udwan K, John R, et al. Integration of genetic testing and pathology for the diagnosis of adults with FSGS.
Clin J Am Soc Nephrol 2019;14:213–223.
9. Liu J, Wang W. Genetic basis of adult-onset nephrotic syndrome and focal segmental glomerulosclerosis.
Front Med 2017;11:333–339.
10. Giglio S, Provenzano A, Mazzinghi B, et al. Heterogeneous genetic alterations in sporadic nephrotic syndrome associate with resistance to immunosuppression.
J Am Soc Nephrol 2015;26:230–236.
11. Genovese G, Friedman DJ, Ross MD, et al. Association of trypanolytic ApoL1 variants with kidney disease in African Americans.
Science 2010;329:841–845.
13. Ekulu PM, Nkoy AB, Adebayo OC, et al. A focus on the association of Apol1 with kidney disease in children.
Pediatr Nephrol 2021;36:777–788.
14. McNulty MT, Fermin D, Eichinger F, et al. A glomerular transcriptomic landscape of apolipoprotein L1 in Black patients with focal segmental glomerulosclerosis.
Kidney Int 2022;102:136–148.
15. Kallash M, Wang Y, Smith A, et al. Rapid progression of focal segmental glomerulosclerosis in patients with high-risk APOL1 genotypes.
Clin J Am Soc Nephrol 2023;18:344–355.
18. Friedman DJ, Pollak MR. APOL1 nephropathy: from genetics to clinical applications.
Clin J Am Soc Nephrol 2021;16:294–303.
20. Snoek R, Nguyen TQ, van der Zwaag B, et al. Importance of genetic diagnostics in adult-onset focal segmental glomerulosclerosis.
Nephron 2019;142:351–358.
21. Gallon L, Leventhal J, Skaro A, Kanwar Y, Alvarado A. Resolution of recurrent focal segmental glomerulosclerosis after retransplantation.
N Engl J Med 2012;366:1648–1649.
22. Shoji J, Mii A, Terasaki M, Shimizu A. Update on recurrent focal segmental glomerulosclerosis in kidney transplantation.
Nephron 2020;144 Suppl 1:65–70.
23. den Braanker DJ, Maas RJ, Deegens JK, et al. Novel in vitro assays to detect circulating permeability factor(s) in idiopathic focal segmental glomerulosclerosis.
Nephrol Dial Transplant 2021;36:247–256.
25. Saleem MA. What is the role of soluble urokinase-type plasminogen activator in renal disease?
Nephron 2018;139:334–341.
27. Jin J, Li YW, He Q. Primary and recurrent focal segmental glomerulosclerosis closely link to serum soluble urokinase-type plasminogen activator receptor levels.
Transplant Proc 2015;47:1760–1765.
29. Harel E, Shoji J, Abraham V, et al. Identifying a potential biomarker for primary focal segmental glomerulosclerosis and its association with recurrence after transplantation.
Clin Transplant 2019;33:e13487.
30. Chen JS, Chang LC, Wu CZ, et al. Significance of the urokinase-type plasminogen activator and its receptor in the progression of focal segmental glomerulosclerosis in clinical and mouse models.
J Biomed Sci 2016;23:24.
31. Spinale JM, Mariani LH, Kapoor S, et al. A reassessment of soluble urokinase-type plasminogen activator receptor in glomerular disease.
Kidney Int 2015;87:564–574.
32. Harel E, Shoji J, Abraham V, et al. Further evidence that the soluble urokinase plasminogen activator receptor does not directly injure mice or human podocytes.
Transplantation 2020;104:54–60.
33. Bock ME, Price HE, Gallon L, Langman CB. Serum soluble urokinase-type plasminogen activator receptor levels and idiopathic FSGS in children: a single-center report.
Clin J Am Soc Nephrol 2013;8:1304–1311.
35. McCarthy ET, Sharma M, Savin VJ. Circulating permeability factors in idiopathic nephrotic syndrome and focal segmental glomerulosclerosis.
Clin J Am Soc Nephrol 2010;5:2115–2121.
37. Sharma M, Zhou J, Gauchat JF, et al. Janus kinase 2/signal transducer and activator of transcription 3 inhibitors attenuate the effect of cardiotrophin-like cytokine factor 1 and human focal segmental glomerulosclerosis serum on glomerular filtration barrier.
Transl Res 2015;166:384–398.
38. Zhang S, Breidenbach JD, Russell BH, George J, Haller ST. CD40/CD40L signaling as a promising therapeutic target for the treatment of renal disease.
J Clin Med 2020;9:3653.
39. Delville M, Sigdel TK, Wei C, et al. A circulating antibody panel for pretransplant prediction of FSGS recurrence after kidney transplantation.
Sci Transl Med 2014;6:256ra136.
40. Lopez-Hellin J, Cantarell C, Jimeno L, et al. A form of apolipoprotein a-I is found specifically in relapses of focal segmental glomerulosclerosis following transplantation.
Am J Transplant 2013;13:493–500.
41. Puig-Gay N, Jacobs-Cacha C, Sellarès J, et al. Apolipoprotein A-Ib as a biomarker of focal segmental glomerulosclerosis recurrence after kidney transplantation: diagnostic performance and assessment of its prognostic value - a multi-centre cohort study.
Transpl Int 2019;32:313–322.
43. Jacobs-Cachá C, Puig-Gay N, Vergara A, et al. A specific tubular apoA-I distribution is associated to fsgs recurrence after kidney transplantation.
J Clin Med 2021;10:2174.
44. Novelli R, Benigni A, Remuzzi G. The role of B7-1 in proteinuria of glomerular origin.
Nat Rev Nephrol 2018;14:589–596.
45. Yu CC, Fornoni A, Weins A, et al. Abatacept in B7-1-positive proteinuric kidney disease.
N Engl J Med 2013;369:2416–2423.
46. Burke GW, Chandar J, Sageshima J, et al. Benefit of B7-1 staining and abatacept for treatment-resistant post-transplant focal segmental glomerulosclerosis in a predominantly pediatric cohort: time for a reappraisal.
Pediatr Nephrol 2023;38:145–159.
48. Novelli R, Gagliardini E, Ruggiero B, Benigni A, Remuzzi G. Any value of podocyte B7-1 as a biomarker in human MCD and FSGS?
Am J Physiol Renal Physiol 2016;310:F335–F341.
49. Eroglu FK, Orhan D, İnözü M, et al. CD80 expression and infiltrating regulatory T cells in idiopathic nephrotic syndrome of childhood.
Pediatr Int 2019;61:1250–1256.
50. Hansrivijit P, Puthenpura MM, Ghahramani N. Efficacy of abatacept treatment for focal segmental glomerulosclerosis and minimal change disease: a systematic review of case reports, case series, and observational studies.
Clin Nephrol 2020;94:117–126.
51. Gebeshuber CA, Kornauth C, Dong L, et al. Focal segmental glomerulosclerosis is induced by microRNA-193a and its downregulation of WT1.
Nat Med 2013;19:481–487.
52. Wang L, Wang J, Wang Z, Zhou J, Zhang Y. Higher urine exosomal miR-193a is associated with a higher probability of primary focal segmental glomerulosclerosis and an increased risk of poor prognosis among children with nephrotic syndrome.
Front Cell Dev Biol 2021;9:727370.
54. Kietzmann L, Guhr SS, Meyer TN, et al. MicroRNA-193a regulates the transdifferentiation of human parietal epithelial cells toward a podocyte phenotype.
J Am Soc Nephrol 2015;26:1389–1401.
55. Bukosza EN, Kornauth C, Hummel K, et al. ECM characterization reveals a massive activation of acute phase response during FSGS.
Int J Mol Sci 2020;21:2095.
56. Zhang C, Zhang W, Chen HM, et al. Plasma microRNA-186 and proteinuria in focal segmental glomerulosclerosis.
Am J Kidney Dis 2015;65:223–232.
57. Qi H, Fu J, Luan J, et al. miR-150 inhibitor ameliorates adriamycin-induced focal segmental glomerulosclerosis.
Biochem Biophys Res Commun 2020;522:618–625.
60. Zhang W, Zhang C, Chen H, et al. Evaluation of microRNAs miR-196a, miR-30a-5P, and miR-490 as biomarkers of disease activity among patients with FSGS.
Clin J Am Soc Nephrol 2014;9:1545–1552.
61. Yildirim D, Bender O, Karagoz ZF, et al. Role of autophagy and evaluation the effects of microRNAs 214, 132, 34c and prorenin receptor in a rat model of focal segmental glomerulosclerosis.
Life Sci 2021;280:119671.
62. Liu G, He L, Yang X, et al. MicroRNA-155-5p aggravates adriamycin-induced focal segmental glomerulosclerosis through targeting Nrf2.
Nephron 2023;147:108–119.
64. Menon R, Otto EA, Hoover P, et al. Single cell transcriptomics identifies focal segmental glomerulosclerosis remission endothelial biomarker.
JCI Insight 2020;5:e133267.
65. Mariani LH, Eddy S, AlAkwaa FM, et al. Precision nephrology identified tumor necrosis factor activation variability in minimal change disease and focal segmental glomerulosclerosis.
Kidney Int 2023;103:565–579.
66. Kidney Disease: Improving Global Outcomes (KDIGO) Glomerular Diseases Work Group. KDIGO 2021 clinical practice guideline for the management of glomerular diseases.
Kidney Int 2021;100:S1–S276.
67. Caster DJ, Magalhaes B, Pennese N, et al. Efficacy and safety of immunosuppressive therapy in primary focal segmental glomerulosclerosis: a systematic review and meta-analysis.
Kidney Med 2022;4:100501.
68. Komers R, Plotkin H. Dual inhibition of renin-angiotensin-aldosterone system and endothelin-1 in treatment of chronic kidney disease.
Am J Physiol Regul Integr Comp Physiol 2016;310:R877–R884.
69. Trachtman H, Nelson P, Adler S, et al. DUET: a phase 2 study evaluating the efficacy and safety of sparsentan in patients with FSGS.
J Am Soc Nephrol 2018;29:2745–2754.
70. Park E, Kang HG, Choi YH, et al. Focal segmental glomerulosclerosis and medullary nephrocalcinosis in children with ADCK4 mutations.
Pediatr Nephrol 2017;32:1547–1554.
72. Atmaca M, Gulhan B, Korkmaz E, et al. Follow-up results of patients with ADCK4 mutations and the efficacy of CoQ10 treatment.
Pediatr Nephrol 2017;32:1369–1375.
74. Drovandi S, Lipska-Ziętkiewicz BS, Ozaltin F, et al. Oral Coenzyme Q10 supplementation leads to better preservation of kidney function in steroid-resistant nephrotic syndrome due to primary Coenzyme Q10 deficiency.
Kidney Int 2022;102:604–612.
75. Rosenberg AZ, Kopp JB. Focal segmental glomerulosclerosis.
Clin J Am Soc Nephrol 2017;12:502–517.
76. Aghajan M, Booten SL, Althage M, et al. Antisense oligonucleotide treatment ameliorates IFN-γ-induced proteinuria in APOL1-transgenic mice.
JCI Insight 2019;4:e126124.
77. Yang YW, Poudel B, Frederick J, et al. Antisense oligonucleotides ameliorate kidney dysfunction in podocyte-specific APOL1 risk variant mice.
Mol Ther 2022;30:2491–2504.
78. Nystrom SE, Li G, Datta S, et al. JAK inhibitor blocks COVID-19 cytokine-induced JAK/STAT/APOL1 signaling in glomerular cells and podocytopathy in human kidney organoids.
JCI Insight 2022;7:e157432.
81. Basu B. Ofatumumab for rituximab-resistant nephrotic syndrome.
N Engl J Med 2014;370:1268–1270.
82. Colucci M, Labbadia R, Vivarelli M, Camassei FD, Emma F, Dello Strologo L. Ofatumumab rescue treatment in post-transplant recurrence of focal segmental glomerulosclerosis.
Pediatr Nephrol 2020;35:341–345.
84. Walsh L, Reilly JF, Cornwall C, et al. Safety and efficacy of GFB-887, a TRPC5 channel inhibitor, in patients with focal segmental glomerulosclerosis, treatment-resistant minimal change disease, or diabetic nephropathy: TRACTION-2 trial design.
Kidney Int Rep 2021;6:2575–2584.
85. Pisarek-Horowitz A, Fan X, Kumar S, et al. Loss of roundabout guidance receptor 2 (Robo2) in podocytes protects adult mice from glomerular injury by maintaining podocyte foot process structure.
Am J Pathol 2020;190:799–816.
86. Fan X, Yang H, Kumar S, et al. SLIT2/ROBO2 signaling pathway inhibits nonmuscle myosin IIA activity and destabilizes kidney podocyte adhesion.
JCI Insight 2016;1:e86934.
87. Beck LH, Berasi SP, Copley JB, et al. PODO: trial design. Phase 2 study of PF-06730512 in focal segmental glomerulosclerosis.
Kidney Int Rep 2021;6:1629–1633.
88. Bharati J, Chander PN, Singhal PC. Parietal epithelial cell behavior and its modulation by microRNA-193a.
Biomolecules 2023;13:266.