1. Szeto CC, Li PK. Peritoneal dialysis-associated peritonitis.
Clin J Am Soc Nephrol 2019;14:1100–1105.
2. Szeto CC, Chow KM, Wong TY, et al. Feasibility of resuming peritoneal dialysis after severe peritonitis and Tenckhoff catheter removal.
J Am Soc Nephrol 2002;13:1040–1045.
3. Li PK, Chow KM. Infectious complications in dialysis: epidemiology and outcomes.
Nat Rev Nephrol 2011;8:77–88.
4. Camargo CH, Cunha Mde L, Caramori JC, Mondelli AL, Montelli AC, Barretti P. Peritoneal dialysis-related peritonitis due to coagulase-negative Staphylococcus: a review of 115 cases in a Brazilian center.
Clin J Am Soc Nephrol 2014;9:1074–1081.
5. Szeto CC, Chow KM, Kwan BC, et al. Staphylococcus aureus peritonitis complicates peritoneal dialysis: review of 245 consecutive cases.
Clin J Am Soc Nephrol 2007;2:245–251.
6. Manera KE, Johnson DW, Craig JC, et al. Patient and caregiver priorities for outcomes in peritoneal dialysis: multinational nominal group technique study.
Clin J Am Soc Nephrol 2019;14:74–83.
7. Li PK, Szeto CC, Piraino B, et al. ISPD peritonitis recommendations: 2016 update on prevention and treatment.
Perit Dial Int 2016;36:481–508.
8. Szeto CC, Wong TY, Chow KM, Leung CB, Li PK. The clinical course of culture-negative peritonitis complicating peritoneal dialysis.
Am J Kidney Dis 2003;42:567–574.
9. Flanigan MJ, Freeman RM, Lim VS. Cellular response to peritonitis among peritoneal dialysis patients.
Am J Kidney Dis 1985;6:420–424.
10. Pfaller MA, Koontz FP. Laboratory evaluation of leukocyte esterase and nitrite tests for the detection of bacteriuria.
J Clin Microbiol 1985;21:840–842.
11. Téllez-Ávila FI, Chávez-Tapia NC, Franco-Guzmán AM, Uribe M, Vargas-Vorackova F. Rapid diagnosis of spontaneous bacterial peritonitis using leukocyte esterase reagent strips in emergency department: uri-quick clini-10SG® vs. Multistix 10SG®.
Ann Hepatol 2012;11:696–699.
12. Moosa AA, Quortum HA, Ibrahim MD. Rapid diagnosis of bacterial meningitis with reagent strips.
Lancet 1995;345:1290–1291.
13. Azoulay E, Fartoukh M, Galliot R, et al. Rapid diagnosis of infectious pleural effusions by use of reagent strips.
Clin Infect Dis 2000;31:914–919.
14. Park SJ, Lee JY, Tak WT, Lee JH. Using reagent strips for rapid diagnosis of peritonitis in peritoneal dialysis patients.
Adv Perit Dial 2005;21:69–71.
15. Farmer CK, Hobbs H, Mann S, et al. Leukocyte esterase reagent strips for early detection of peritonitis in patients on peritoneal dialysis.
Perit Dial Int 2000;20:237–239.
16. Fan S, Lane C, Punzalan S. Correlation of periscreen strip results and white cell count in peritoneal dialysis peritonitis.
J Ren Care 2010;36:90–95.
17. Rathore V, Joshi H, Kimmatkar PD, et al. Leukocyte esterase reagent strip as a bedside tool to detect peritonitis in patients undergoing acute peritoneal dialysis.
Saudi J Kidney Dis Transpl 2017;28:1264–1269.
18. Yang X, Tong Y, Yan H, Ni Z, Qian J, Fang W. High intraperitoneal interleukin-6 levels predict peritonitis in peritoneal dialysis patients: a prospective cohort study.
Am J Nephrol 2018;47:317–324.
19. Hurst SM, Wilkinson TS, McLoughlin RM, et al. Il-6 and its soluble receptor orchestrate a temporal switch in the pattern of leukocyte recruitment seen during acute inflammation.
Immunity 2001;14:705–714.
20. Fung WW, Poon PY, Ng JK, et al. Longitudinal changes of NF-κB downstream mediators and peritoneal transport characteristics in incident peritoneal dialysis patients.
Sci Rep 2020;10:6440.
21. Opdenakker G. New insights in the regulation of leukocytosis and the role played by leukocytes in septic shock.
Verh K Acad Geneeskd Belg 2001;63:531–538.
22. Atkinson SJ, Nolan M, Klingbeil L, et al. Intestine-derived matrix metalloproteinase-8 is a critical mediator of polymicrobial peritonitis.
Crit Care Med 2016;44:e200.
24. Goodlad C, George S, Sandoval S, et al. Measurement of innate immune response biomarkers in peritoneal dialysis effluent using a rapid diagnostic point-of-care device as a diagnostic indicator of peritonitis.
Kidney Int 2020;97:1253–1259.
25. Nasioudis D, Witkin SS. Neutrophil gelatinase-associated lipocalin and innate immune responses to bacterial infections.
Med Microbiol Immunol 2015;204:471–479.
26. Axelsson L, Bergenfeldt M, Ohlsson K. Studies of the release and turnover of a human neutrophil lipocalin.
Scand J Clin Lab Invest 1995;55:577–588.
27. Leung JC, Lam MF, Tang SC, et al. Roles of neutrophil gelatinase-associated lipocalin in continuous ambulatory peritoneal dialysis-related peritonitis.
J Clin Immunol 2009;29:365–378.
28. Lacquaniti A, Chirico V, Mondello S, et al. Neutrophil gelatinase-associated lipocalin in peritoneal dialysis reflects status of peritoneum.
J Nephrol 2013;26:1151–1159.
29. Martino F, Scalzotto E, Giavarina D, et al. The role of NGAL in peritoneal dialysis effluent in early diagnosis of peritonitis: case-control study in peritoneal dialysis patients.
Perit Dial Int 2015;35:559–565.
30. Schmidt-Ott KM, Mori K, Li JY, et al. Dual action of neutrophil gelatinase-associated lipocalin.
J Am Soc Nephrol 2007;18:407–413.
31. Iyer RN, Reddy AK, Gande S, Aiyangar A. Evaluation of different culture methods for the diagnosis of peritonitis in patients on continuous ambulatory peritoneal dialysis.
Clin Microbiol Infect 2014;20:O294–O296.
32. Kim SH, Jeong HS, Kim YH, et al. Evaluation of DNA extraction methods and their clinical application for direct detection of causative bacteria in continuous ambulatory peritoneal dialysis culture fluids from patients with peritonitis by using broad-range PCR.
Ann Lab Med 2012;32:119–125.
33. Rantakokko-Jalava K, Jalava J. Optimal DNA isolation method for detection of bacteria in clinical specimens by broad-range PCR.
J Clin Microbiol 2002;40:4211–4217.
34. Yoo TH, Chang KH, Ryu DR, et al. Usefulness of 23S rRNA amplification by PCR in the detection of bacteria in CAPD peritonitis.
Am J Nephrol 2006;26:115–120.
35. Yatera K, Noguchi S, Mukae H. Perspective on the clone library method for infectious diseases.
Respir Investig 2021;59:741–747.
36. Patel JB. 16S rRNA gene sequencing for bacterial pathogen identification in the clinical laboratory.
Mol Diagn 2001;6:313–321.
37. Petti CA. Detection and identification of microorganisms by gene amplification and sequencing.
Clin Infect Dis 2007;44:1108–1114.
38. Clarridge JE 3rd. Impact of 16S rRNA gene sequence analysis for identification of bacteria on clinical microbiology and infectious diseases.
Clin Microbiol Rev 2004;17:840–862.
39. Ahmadi SH, Neela V, Hamat RA, Goh BL, Syafinaz AN. Rapid detection and identification of pathogens in patients with continuous ambulatory peritoneal dialysis (CAPD) associated peritonitis by 16s rRNA gene sequencing.
Trop Biomed 2013;30:602–607.
40. van Hougenhouck-Tulleken WG, Lebre PH, Said M, Cowan DA. Bacterial pathogens in peritoneal dialysis peritonitis: insights from next-generation sequencing.
Perit Dial Int 2020;40:581–586.
41. Johnson G, Wilks M, Warwick S, Millar MR, Fan SL. Comparative study of diagnosis of PD peritonitis by quantitative polymerase chain reaction for bacterial DNA vs culture methods.
J Nephrol 2006;19:45–49.
42. Chang YT, Wang HC, Wang MC, et al. Rapid identification of bacteria and Candida pathogens in peritoneal dialysis effluent from patients with peritoneal dialysis-related peritonitis by use of multilocus PCR coupled with electrospray ionization mass spectrometry.
J Clin Microbiol 2014;52:1217–1219.
43. Bacconi A, Richmond GS, Baroldi MA, et al. Improved sensitivity for molecular detection of bacterial and Candida infections in blood.
J Clin Microbiol 2014;52:3164–3174.
44. Poole S, Kidd SP, Saeed K. A review of novel technologies and techniques associated with identification of bloodstream infection etiologies and rapid antimicrobial genotypic and quantitative phenotypic determination.
Expert Rev Mol Diagn 2018;18:543–555.
45. Metzgar D, Frinder M, Lovari R, et al. Broad-spectrum biosensor capable of detecting and identifying diverse bacterial and Candida species in blood.
J Clin Microbiol 2013;51:2670–2678.
46. Sampath R, Mulholland N, Blyn LB, et al. Comprehensive biothreat cluster identification by PCR/electrospray-ionization mass spectrometry.
PLoS One 2012;7:e36528.
47. Ecker DJ, Massire C, Blyn LB, et al. Molecular genotyping of microbes by multilocus PCR and mass spectrometry: a new tool for hospital infection control and public health surveillance.
Methods Mol Biol 2009;551:71–87.
48. Ecker DJ, Sampath R, Massire C, et al. Ibis T5000: a universal biosensor approach for microbiology.
Nat Rev Microbiol 2008;6:553–558.
49. Szeto CC, Ng JK, Fung WW, et al. Polymerase chain reaction/electrospray ionization-mass spectrometry (PCR/ESI-MS) is not suitable for rapid bacterial identification in peritoneal dialysis effluent.
Perit Dial Int 2021;41:96–100.
50. Fenselau C, Demirev PA. Characterization of intact microorganisms by MALDI mass spectrometry.
Mass Spectrom Rev 2001;20:157–171.
51. Lay JO Jr. MALDI-TOF mass spectrometry of bacteria.
Mass Spectrom Rev 2001;20:172–194.
52. Kothari A, Morgan M, Haake DA. Emerging technologies for rapid identification of bloodstream pathogens.
Clin Infect Dis 2014;59:272–278.
53. Seng P, Drancourt M, Gouriet F, et al. Ongoing revolution in bacteriology: routine identification of bacteria by matrix-assisted laser desorption ionization time-of-flight mass spectrometry.
Clin Infect Dis 2009;49:543–551.
54. Seng P, Abat C, Rolain JM, et al. Identification of rare pathogenic bacteria in a clinical microbiology laboratory: impact of matrix-assisted laser desorption ionization-time of flight mass spectrometry.
J Clin Microbiol 2013;51:2182–2194.
55. Lin WH, Hwang JC, Tseng CC, et al. Matrix-assisted laser desorption ionization-time of flight mass spectrometry accelerates pathogen identification and may confer benefit in the outcome of peritoneal dialysis-related peritonitis.
J Clin Microbiol 2016;54:1381–1383.
56. Szeto CC, Lai KB, Kwan BC, et al. Bacteria-derived DNA fragment in peritoneal dialysis effluent as a predictor of relapsing peritonitis.
Clin J Am Soc Nephrol 2013;8:1935–1941.
57. Szeto CC, Lai KB, Chow KM, et al. Dialysate bacterial endotoxin as a prognostic indicator of peritoneal dialysis related peritonitis.
Nephrology (Carlton) 2016;21:1069–1072.
58. Chow KM, Szeto CC, Cheung KK, et al. Predictive value of dialysate cell counts in peritonitis complicating peritoneal dialysis.
Clin J Am Soc Nephrol 2006;1:768–773.
59. Nochaiwong S, Ruengorn C, Koyratkoson K, et al. A clinical risk prediction tool for peritonitis-associated treatment failure in peritoneal dialysis patients.
Sci Rep 2018;8:14797.
60. Lin CY, Roberts GW, Kift-Morgan A, Donovan KL, Topley N, Eberl M. Pathogen-specific local immune fingerprints diagnose bacterial infection in peritoneal dialysis patients.
J Am Soc Nephrol 2013;24:2002–2009.
61. Bajpai A, Prasad KN, Mishra P, Singh AK, Gupta RK, Ojha BK. Distinct cytokine pattern in response to different bacterial pathogens in human brain abscess.
J Neuroimmunol 2014;273:96–102.
62. Takeuchi T, Ohno H, Satoh-Takayama N. Understanding the immune signature fingerprint of peritoneal dialysis-related peritonitis.
Kidney Int 2017;92:16–18.
63. Zhang J, Friberg IM, Kift-Morgan A, et al. Machine-learning algorithms define pathogen-specific local immune fingerprints in peritoneal dialysis patients with bacterial infections.
Kidney Int 2017;92:179–191.