1. de Baaij JH, Hoenderop JG, Bindels RJ. Magnesium in man: implications for health and disease.
Physiol Rev 2015;95:1–46.
2. Viering DH, de Baaij JH, Walsh SB, Kleta R, Bockenhauer D. Genetic causes of hypomagnesemia, a clinical overview.
Pediatr Nephrol 2017;32:1123–1135.
3. Simon DB, Lu Y, Choate KA, et al. Paracellin-1, a renal tight junction protein required for paracellular Mg2+resorption.
Science 1999;285:103–106.
4. Konrad M, Schaller A, Seelow D, et al. Mutations in the tight-junction gene claudin 19 (CLDN19) are associated with renal magnesium wasting, renal failure, and severe ocular involvement.
Am J Hum Genet 2006;79:949–957.
5. Gong Y, Renigunta V, Himmerkus N, et al. Claudin-14 regulates renal Ca⁺⁺ transport in response to CaSR signalling via a novel microRNA pathway.
EMBO J 2012;31:1999–2012.
6. Simon DB, Bindra RS, Mansfield TA, et al. Mutations in the chloride channel gene, CLCNKB, cause Bartter’s syndrome type III.
Nat Genet 1997;17:171–178.
7. Voets T, Nilius B, Hoefs S, et al. TRPM6 forms the Mg2+influx channel involved in intestinal and renal Mg2+ absorption.
J Biol Chem 2004;279:19–25.
8. Chubanov V, Waldegger S, Mederos y Schnitzler M, et al. Disruption of TRPM6/TRPM7 complex formation by a mutation in the TRPM6 gene causes hypomagnesemia with secondary hypocalcemia.
Proc Natl Acad Sci U S A 2004;101:2894–2899.
9. Franken GA, Adella A, Bindels RJ, de Baaij JH. Mechanisms coupling sodium and magnesium reabsorption in the distal convoluted tubule of the kidney.
Acta Physiol (Oxf) 2021;231:e13528.
10. Kolisek M, Nestler A, Vormann J, Schweigel-Röntgen M. Human gene SLC41A1 encodes for the Na+/Mg2+ exchanger.
Am J Physiol Cell Physiol 2012;302:C318–C326.
11. Arjona FJ, de Baaij JH. CrossTalk opposing view: CNNM proteins are not Na+ /Mg2+ exchangers but Mg2+ transport regulators playing a central role in transepithelial Mg2+ (re)absorption.
J Physiol 2018;596:747–750.
12. Arjona FJ, Latta F, Mohammed SG, et al. SLC41A1 is essential for magnesium homeostasis in vivo.
Pflugers Arch 2019;471:845–860.
13. Browne DL, Gancher ST, Nutt JG, et al. Episodic ataxia/myokymia syndrome is associated with point mutations in the human potassium channel gene, KCNA1.
Nat Genet 1994;8:136–140.
14. Thebault S, Alexander RT, Tiel Groenestege WM, Hoenderop JG, Bindels RJ. EGF increases TRPM6 activity and surface expression.
J Am Soc Nephrol 2009;20:78–85.
15. Mayan H, Farfel Z, Karlish SJ. Renal Mg handling, FXYD2 and the central role of the Na,K-ATPase.
Physiol Rep 2018;6:e13843.
16. Su XT, Ellison DH, Wang WH. Kir4.1/Kir5.1 in the DCT plays a role in the regulation of renal K + excretion.
Am J Physiol Renal Physiol 2019;316:F582–F586.
17. Claverie-Martin F. Familial hypomagnesaemia with hypercalciuria and nephrocalcinosis: clinical and molecular characteristics.
Clin Kidney J 2015;8:656–664.
18. Praga M, Vara J, González-Parra E, et al. Familial hypomagnesemia with hypercalciuria and nephrocalcinosis.
Kidney Int 1995;47:1419–1425.
19. Weber S, Schneider L, Peters M, et al. Novel paracellin-1 mutations in 25 families with familial hypomagnesemia with hypercalciuria and nephrocalcinosis.
J Am Soc Nephrol 2001;12:1872–1881.
20. Blanchard A, Jeunemaitre X, Coudol P, et al. Paracellin-1 is critical for magnesium and calcium reabsorption in the human thick ascending limb of Henle.
Kidney Int 2001;59:2206–2215.
21. Claverie-Martín F, García-Nieto V, Loris C, et al. Claudin-19 mutations and clinical phenotype in Spanish patients with familial hypomagnesemia with hypercalciuria and nephrocalcinosis.
PLoS One 2013;8:e53151.
22. Konrad M, Hou J, Weber S, et al. CLDN16 genotype predicts renal decline in familial hypomagnesemia with hypercalciuria and nephrocalcinosis.
J Am Soc Nephrol 2008;19:171–181.
23. Vall-Palomar M, Burballa C, Claverie-Martín F, Meseguer A, Ariceta G. Heterogeneity is a common ground in familial hypomagnesemia with hypercalciuria and nephrocalcinosis caused by CLDN19 gene mutations. J Nephrol 2021;34:2053–2062.
24. Yamaguti PM, Neves FA, Hotton D, et al. Amelogenesis imperfecta in familial hypomagnesaemia and hypercalciuria with nephrocalcinosis caused by CLDN19 gene mutations.
J Med Genet 2017;54:26–37.
25. Bardet C, Courson F, Wu Y, et al. Claudin-16 deficiency impairs tight junction function in ameloblasts, leading to abnormal enamel formation.
J Bone Miner Res 2016;31:498–513.
26. Godron A, Harambat J, Boccio V, et al. Familial hypomagnesemia with hypercalciuria and nephrocalcinosis: phenotype-genotype correlation and outcome in 32 patients with CLDN16 or CLDN19 mutations.
Clin J Am Soc Nephrol 2012;7:801–809.
27. Miyamoto T, Morita K, Takemoto D, et al. Tight junctions in Schwann cells of peripheral myelinated axons: a lesson from claudin-19-deficient mice.
J Cell Biol 2005;169:527–538.
28. Hou J, Renigunta A, Konrad M, et al. Claudin-16 and claudin-19 interact and form a cation-selective tight junction complex.
J Clin Invest 2008;118:619–628.
29. Hou J, Renigunta A, Gomes AS, et al. Claudin-16 and claudin-19 interaction is required for their assembly into tight junctions and for renal reabsorption of magnesium.
Proc Natl Acad Sci U S A 2009;106:15350–15355.
30. Schlingmann KP, Sassen MC, Weber S, et al. Novel TRPM6 mutations in 21 families with primary hypomagnesemia and secondary hypocalcemia.
J Am Soc Nephrol 2005;16:3061–3069.
31. Schlingmann KP, Weber S, Peters M, et al. Hypomagnesemia with secondary hypocalcemia is caused by mutations in TRPM6, a new member of the TRPM gene family.
Nat Genet 2002;31:166–170.
32. Walder RY, Landau D, Meyer P, et al. Mutation of TRPM6 causes familial hypomagnesemia with secondary hypocalcemia.
Nat Genet 2002;31:171–174.
33. Krapivinsky G, Krapivinsky L, Renthal NE, Santa-Cruz A, Manasian Y, Clapham DE. Histone phosphorylation by TRPM6’s cleaved kinase attenuates adjacent arginine methylation to regulate gene expression.
Proc Natl Acad Sci U S A 2017;114:E7092–E7100.
34. Groenestege WM, Thébault S, van der Wijst J, et al. Impaired basolateral sorting of pro-EGF causes isolated recessive renal hypomagnesemia.
J Clin Invest 2007;117:2260–2267.
35. Campbell P, Morton PE, Takeichi T, et al. Epithelial inflammation resulting from an inherited loss-of-function mutation in EGFR.
J Invest Dermatol 2014;134:2570–2578.
36. Stuiver M, Lainez S, Will C, et al. CNNM2, encoding a basolateral protein required for renal Mg2+ handling, is mutated in dominant hypomagnesemia.
Am J Hum Genet 2011;88:333–343.
37. Arjona FJ, de Baaij JH, Schlingmann KP, et al. CNNM2 mutations cause impaired brain development and seizures in patients with hypomagnesemia.
PLoS Genet 2014;10:e1004267.
38. Franken GA, Müller D, Mignot C, et al. The phenotypic and genetic spectrum of patients with heterozygous mutations in cyclin M2 (CNNM2).
Hum Mutat 2021;42:473–486.
39. Accogli A, Scala M, Calcagno A, et al. CNNM2 homozygous mutations cause severe refractory hypomagnesemia, epileptic encephalopathy and brain malformations.
Eur J Med Genet 2019;62:198–203.
40. de Baaij JH, Stuiver M, Meij IC, et al. Membrane topology and intracellular processing of cyclin M2 (CNNM2).
J Biol Chem 2012;287:13644–13655.
41. Chen YS, Kozlov G, Fakih R, et al. Mg 2+-ATP sensing in CNNM, a putative magnesium transporter.
Structure 2020;28:324–335.
42. Rodríguez-Soriano J. Bartter and related syndromes: the puzzle is almost solved.
Pediatr Nephrol 1998;12:315–327.
43. Konrad M, Nijenhuis T, Ariceta G, et al. Diagnosis and management of Bartter syndrome: executive summary of the consensus and recommendations from the European Rare Kidney Disease Reference Network Working Group for Tubular Disorders.
Kidney Int 2021;99:324–335.
44. Seys E, Andrini O, Keck M, et al. Clinical and genetic spectrum of Bartter syndrome type 3.
J Am Soc Nephrol 2017;28:2540–2552.
45. Konrad M, Vollmer M, Lemmink HH, et al. Mutations in the chloride channel gene CLCNKB as a cause of classic Bartter syndrome.
J Am Soc Nephrol 2000;11:1449–1459.
46. Blanchard A, Bockenhauer D, Bolignano D, et al. Gitelman syndrome: consensus and guidance from a Kidney Disease: Improving Global Outcomes (KDIGO) Controversies Conference.
Kidney Int 2017;91:24–33.
47. Cruz DN, Shaer AJ, Bia MJ, Lifton RP, Simon DB; Yale Gitelman’s and Bartter’s Syndrome Collaborative Study Group. Gitelman’s syndrome revisited: an evaluation of symptoms and health-related quality of life.
Kidney Int 2001;59:710–717.
48. Simon DB, Nelson-Williams C, Bia MJ, et al. Gitelman’s variant of Bartter’s syndrome, inherited hypokalaemic alkalosis, is caused by mutations in the thiazide-sensitive Na-Cl cotransporter.
Nat Genet 1996;12:24–30.
49. Vargas-Poussou R, Dahan K, Kahila D, et al. Spectrum of mutations in Gitelman syndrome.
J Am Soc Nephrol 2011;22:693–703.
50. McCormick JA, Ellison DH. Distal convoluted tubule.
Compr Physiol 2015;5:45–98.
51. Nijenhuis T, Vallon V, van der Kemp AW, Loffing J, Hoenderop JG, Bindels RJ. Enhanced passive Ca2+ reabsorption and reduced Mg2+ channel abundance explains thiazide-induced hypocalciuria and hypomagnesemia.
J Clin Invest 2005;115:1651–1658.
52. Pearce SH, Williamson C, Kifor O, et al. A familial syndrome of hypocalcemia with hypercalciuria due to mutations in the calcium-sensing receptor.
N Engl J Med 1996;335:1115–1122.
53. Hannan FM, Kallay E, Chang W, Brandi ML, Thakker RV. The calcium-sensing receptor in physiology and in calcitropic and noncalcitropic diseases.
Nat Rev Endocrinol 2018;15:33–51.
54. Pollak MR, Brown EM, Estep HL, et al. Autosomal dominant hypocalcaemia caused by a Ca(2+)-sensing receptor gene mutation.
Nat Genet 1994;8:303–307.
55. Loupy A, Ramakrishnan SK, Wootla B, et al. PTH-independent regulation of blood calcium concentration by the calcium-sensing receptor.
J Clin Invest 2012;122:3355–3367.
56. Paulhus K, Ammerman L, Glasscock E. Clinical spectrum of KCNA1 mutations: new insights into episodic ataxia and epilepsy comorbidity.
Int J Mol Sci 2020;21:2802.
57. Graves TD, Cha YH, Hahn AF, et al. Episodic ataxia type 1: clinical characterization, quality of life and genotype-phenotype correlation.
Brain 2014;137(Pt 4):1009–1018.
58. Glaudemans B, van der Wijst J, Scola RH, et al. A missense mutation in the Kv1.1 voltage-gated potassium channel-encoding gene KCNA1 is linked to human autosomal dominant hypomagnesemia.
J Clin Invest 2009;119:936–942.
59. van der Wijst J, Konrad M, Verkaart SA, et al. A de novo KCNA1 mutation in a patient with tetany and hypomagnesemia.
Nephron 2018;139:359–366.
60. van der Wijst J, Glaudemans B, Venselaar H, et al. Functional analysis of the Kv1.1 N255D mutation associated with autosomal dominant hypomagnesemia.
J Biol Chem 2010;285:171–178.
61. Geven WB, Monnens LA, Willems JL, Buijs W, Hamel CJ. Isolated autosomal recessive renal magnesium loss in two sisters.
Clin Genet 1987;32:398–402.
62. Meij IC, Koenderink JB, van Bokhoven H, et al. Dominant isolated renal magnesium loss is caused by misrouting of the Na(+),K(+)-ATPase gamma-subunit.
Nat Genet 2000;26:265–266.
63. de Baaij JH, Dorresteijn EM, Hennekam EA, et al. Recurrent FXYD2 p.Gly41Arg mutation in patients with isolated dominant hypomagnesaemia.
Nephrol Dial Transplant 2015;30:952–957.
64. Arystarkhova E, Sweadner KJ. Splice variants of the gamma subunit (FXYD2) and their significance in regulation of the Na, K-ATPase in kidney.
J Bioenerg Biomembr 2005;37:381–386.
65. Schlingmann KP, Bandulik S, Mammen C, et al. Germline de novo mutations in ATP1A1 cause renal hypomagnesemia, refractory seizures, and intellectual disability.
Am J Hum Genet 2018;103:808–816.
66. Lassuthova P, Rebelo AP, Ravenscroft G, et al. Mutations in ATP1A1 cause dominant charcot-marie-tooth type 2.
Am J Hum Genet 2018;102:505–514.
67. Bockenhauer D, Feather S, Stanescu HC, et al. Epilepsy, ataxia, sensorineural deafness, tubulopathy, and KCNJ10 mutations.
N Engl J Med 2009;360:1960–1970.
68. Scholl UI, Choi M, Liu T, et al. Seizures, sensorineural deafness, ataxia, mental retardation, and electrolyte imbalance (SeSAME syndrome) caused by mutations in KCNJ10.
Proc Natl Acad Sci U S A 2009;106:5842–5847.
69. Bandulik S, Schmidt K, Bockenhauer D, et al. The salt-wasting phenotype of EAST syndrome, a disease with multifaceted symptoms linked to the KCNJ10 K+ channel.
Pflugers Arch 2011;461:423–435.
70. Scholl UI, Dave HB, Lu M, et al. SeSAME/EAST syndrome--phenotypic variability and delayed activity of the distal convoluted tubule.
Pediatr Nephrol 2012;27:2081–2090.
71. Devuyst O, Olinger E, Weber S, et al. Autosomal dominant tubulointerstitial kidney disease.
Nat Rev Dis Primers 2019;5:60.
72. Adalat S, Woolf AS, Johnstone KA, et al. HNF1B mutations associate with hypomagnesemia and renal magnesium wasting.
J Am Soc Nephrol 2009;20:1123–1131.
73. Faguer S, Decramer S, Chassaing N, et al. Diagnosis, management, and prognosis of HNF1B nephropathy in adulthood.
Kidney Int 2011 Oct;80:768–776.
74. Horikawa Y, Iwasaki N, Hara M, et al. Mutation in hepatocyte nuclear factor-1 beta gene (TCF2) associated with MODY.
Nat Genet 1997;17:384–385.
75. Bingham C, Bulman MP, Ellard S, et al. Mutations in the hepatocyte nuclear factor-1beta gene are associated with familial hypoplastic glomerulocystic kidney disease.
Am J Hum Genet 2001;68:219–224.
76. Ferrè S, Igarashi P. New insights into the role of HNF-1β in kidney (patho)physiology.
Pediatr Nephrol 2019;34:1325–1335.
77. Kompatscher A, de Baaij JHF, Aboudehen K, et al. Loss of transcriptional activation of the potassium channel Kir5.1 by HNF1β drives autosomal dominant tubulointerstitial kidney disease.
Kidney Int 2017;92:1145–1156.
78. Thöny B, Neuheiser F, Kierat L, et al. Hyperphenylalaninemia with high levels of 7-biopterin is associated with mutations in the PCBD gene encoding the bifunctional protein pterin-4a-carbinolamine dehydratase and transcriptional coactivator (DCoH).
Am J Hum Genet 1998;62:1302–1311.
79. Ferrè S, de Baaij JH, Ferreira P, et al. Mutations in PCBD1 cause hypomagnesemia and renal magnesium wasting.
J Am Soc Nephrol 2014;25:574–586.
80. Johnen G, Kaufman S. Studies on the enzymatic and transcriptional activity of the dimerization cofactor for hepatocyte nuclear factor 1.
Proc Natl Acad Sci U S A 1997;94:13469–13474.
81. Mendel DB, Khavari PA, Conley PB, et al. Characterization of a cofactor that regulates dimerization of a mammalian homeodomain protein.
Science 1991;254:1762–1767.
82. Unger S, Górna MW, Le Béchec A, et al. FAM111A mutations result in hypoparathyroidism and impaired skeletal development.
Am J Hum Genet 2013;92:990–995.
83. Isojima T, Doi K, Mitsui J, et al. A recurrent de novo FAM111A mutation causes Kenny-Caffey syndrome type 2.
J Bone Miner Res 2014;29:992–998.
84. Nikkel SM, Ahmed A, Smith A, Marcadier J, Bulman DE, Boycott KM. Mother-to-daughter transmission of Kenny-Caffey syndrome associated with the recurrent, dominant FAM111A mutation p.Arg569His.
Clin Genet 2014;86:394–395.
85. Cheng SS, Chan PK, Luk HM, Mok MT, Lo IF. Adult Chinese twins with Kenny-Caffey syndrome type 2: a potential age-dependent phenotype and review of literature.
Am J Med Genet A 2021;185:636–646.
86. Fine DA, Rozenblatt-Rosen O, Padi M, et al. Identification of FAM111A as an SV40 host range restriction and adenovirus helper factor.
PLoS Pathog 2012;8:e1002949.
87. Kojima Y, Machida Y, Palani S, et al. FAM111A protects replication forks from protein obstacles via its trypsin-like domain.
Nat Commun 2020;11:1318.
88. Hoffmann S, Pentakota S, Mund A, et al. FAM111 protease activity undermines cellular fitness and is amplified by gain-of-function mutations in human disease.
EMBO Rep 2020;21:e50662.
89. Nie M, Oravcová M, Jami-Alahmadi Y, et al. FAM111A induces nuclear dysfunction in disease and viral restriction.
EMBO Rep 2021;22:e50803.
90. Tan RS, Lee CH, Dimke H, Todd Alexander R. The role of calcium-sensing receptor signaling in regulating transepithelial calcium transport. Exp Biol Med (Maywood) 2021;24:2407–2419.
91. Bhargava P, Schnellmann RG. Mitochondrial energetics in the kidney.
Nat Rev Nephrol 2017;13:629–646.
92. Gorman GS, Chinnery PF, DiMauro S, et al. Mitochondrial diseases.
Nat Rev Dis Primers 2016;2:16080.
93. Govers LP, Toka HR, Hariri A, Walsh SB, Bockenhauer D. Mitochondrial DNA mutations in renal disease: an overview.
Pediatr Nephrol 2021;36:9–17.
94. Wilson FH, Hariri A, Farhi A, et al. A cluster of metabolic defects caused by mutation in a mitochondrial tRNA.
Science 2004;306:1190–1194.
95. Ashraf SS, Ansari G, Guenther R, Sochacka E, Malkiewicz A, Agris PF. The uridine in “U-turn”: contributions to tRNA-ribosomal binding.
RNA 1999;5:503–511.
96. Konrad M, Schlingmann KP, Gudermann T. Insights into the molecular nature of magnesium homeostasis.
Am J Physiol Renal Physiol 2004;286:F599–F605.
97. Mancuso M, Orsucci D, Angelini C, et al. Redefining phenotypes associated with mitochondrial DNA single deletion.
J Neurol 2015;262:1301–1309.
98. Katsanos KH, Elisaf M, Bairaktari E, Tsianos EV. Severe hypomagnesemia and hypoparathyroidism in Kearns-Sayre syndrome.
Am J Nephrol 2001;21:150–153.
99. Emma F, Pizzini C, Tessa A, et al. “Bartter-like” phenotype in Kearns-Sayre syndrome.
Pediatr Nephrol 2006;21:355–360.
100. Belostotsky R, Ben-Shalom E, Rinat C, et al. Mutations in the mitochondrial seryl-tRNA synthetase cause hyperuricemia, pulmonary hypertension, renal failure in infancy and alkalosis, HUPRA syndrome.
Am J Hum Genet 2011;88:193–200.
101. Rivera H, Martín-Hernández E, Delmiro A, et al. A new mutation in the gene encoding mitochondrial seryl-tRNA synthetase as a cause of HUPRA syndrome.
BMC Nephrol 2013;14:195.
102. Horinouchi T, Nozu K, Kamiyoshi N, et al. Diagnostic strategy for inherited hypomagnesemia.
Clin Exp Nephrol 2017;21:1003–1010.