1. Choi JO, Lee MH, Park HY, Jung SC. Characterization of Fabry mice treated with recombinant adeno-associated virus 2/8-mediated gene transfer.
J Biomed Sci 2010;17:26.
2. Jaurretche S, Perez G, Antongiovanni N, Perretta F, Venera G. Variables associated with a urinary microRNAs excretion profile indicative of renal fibrosis in Fabry disease patients.
Int J Chronic Dis 2019;2019:4027606.
3. Rozenfeld PA, de Los Angeles Bolla M, Quieto P, et al. Pathogenesis of Fabry nephropathy: the pathways leading to fibrosis.
Mol Genet Metab 2020;129:132–141.
4. Hasbal NB, Caglayan FB, Sakaci T, et al. Unexpectedly high prevalence of low alpha-galactosidase A enzyme activity in patients with focal segmental glomerulosclerosis.
Clinics (Sao Paulo) 2020;75:e1811.
5. Schiffmann R, Hughes DA, Linthorst GE, et al. Screening, diagnosis, and management of patients with Fabry disease: conclusions from a \"Kidney Disease: Improving Global Outcomes\" (KDIGO) Controversies Conference.
Kidney Int 2017;91:284–293.
6. Jabbarzadeh-Tabrizi S, Boutin M, Day TS, et al. Assessing the role of glycosphingolipids in the phenotype severity of Fabry disease mouse model.
J Lipid Res 2020;61:1410–1423.
7. Shen JS, Meng XL, Wight-Carter M, et al. Blocking hyperactive androgen receptor signaling ameliorates cardiac and renal hypertrophy in Fabry mice.
Hum Mol Genet 2015;24:3181–3191.
8. Rozenfeld P, Feriozzi S. Contribution of inflammatory pathways to Fabry disease pathogenesis.
Mol Genet Metab 2017;122:19–27.
9. Ballabio A, Gieselmann V. Lysosomal disorders: from storage to cellular damage.
Biochim Biophys Acta 2009;1793:684–696.
10. De Francesco PN, Mucci JM, Ceci R, Fossati CA, Rozenfeld PA. Fabry disease peripheral blood immune cells release inflammatory cytokines: role of globotriaosylceramide.
Mol Genet Metab 2013;109:93–99.
11. Surendran K, Vitiello SP, Pearce DA. Lysosome dysfunction in the pathogenesis of kidney diseases.
Pediatr Nephrol 2014;29:2253–2261.
12. Shu L, Park JL, Byun J, Pennathur S, Kollmeyer J, Shayman JA. Decreased nitric oxide bioavailability in a mouse model of Fabry disease.
J Am Soc Nephrol 2009;20:1975–1985.
13. Shen JS, Arning E, West ML, et al. Tetrahydrobiopterin deficiency in the pathogenesis of Fabry disease.
Hum Mol Genet 2017;26:1182–1192.
14. Shen JS, Meng XL, Moore DF, et al. Globotriaosylceramide induces oxidative stress and up-regulates cell adhesion molecule expression in Fabry disease endothelial cells.
Mol Genet Metab 2008;95:163–168.
15. Biancini GB, Vanzin CS, Rodrigues DB, et al. Globotriaosylceramide is correlated with oxidative stress and inflammation in Fabry patients treated with enzyme replacement therapy.
Biochim Biophys Acta 2012;1822:226–232.
16. Lee MH, Choi EN, Jeon YJ, Jung SC. Possible role of transforming growth factor-β1 and vascular endothelial growth factor in Fabry disease nephropathy.
Int J Mol Med 2012;30:1275–1280.
17. Sutariya B, Jhonsa D, Saraf MN. TGF-β: the connecting link between nephropathy and fibrosis.
Immunopharmacol Immunotoxicol 2016;38:39–49.
18. Nelson MP, Tse TE, O\'Quinn DB, et al. Autophagy-lysosome pathway associated neuropathology and axonal degeneration in the brains of alpha-galactosidase A-deficient mice.
Acta Neuropathol Commun 2014;2:20.
19. Chung S, Kim S, Son M, et al. Inhibition of p300/CBP-associated factor attenuates renal tubulointerstitial fibrosis through modulation of NF-kB and Nrf2.
Int J Mol Sci 2019;20:1554.
20. Chung S, Overstreet JM, Li Y, et al. TGF-β promotes fibrosis after severe acute kidney injury by enhancing renal macrophage infiltration.
JCI Insight 2018;3:e123563.
21. Yang X, Wang H, Tu Y, et al. WNT1-inducible signaling protein-1 mediates TGF-β1-induced renal fibrosis in tubular epithelial cells and unilateral ureteral obstruction mouse models via autophagy.
J Cell Physiol 2020;235:2009–2022.
22. Kim WY, Nam SA, Song HC, et al. The role of autophagy in unilateral ureteral obstruction rat model.
Nephrology (Carlton) 2012;17:148–159.
23. Xu Y, Ruan S, Wu X, Chen H, Zheng K, Fu B. Autophagy and apoptosis in tubular cells following unilateral ureteral obstruction are associated with mitochondrial oxidative stress.
Int J Mol Med 2013;31:628–636.
24. Ding Y, Kim Sl, Lee SY, Koo JK, Wang Z, Choi ME. Autophagy regulates TGF-β expression and suppresses kidney fibrosis induced by unilateral ureteral obstruction.
J Am Soc Nephrol 2014;25:2835–2846.
25. Yogasundaram H, Nikhanj A, Putko BN, et al. Elevated inflammatory plasma biomarkers in patients with Fabry disease: a critical link to heart failure with preserved ejection fraction.
J Am Heart Assoc 2018;7:e009098.
26. Chen KH, Chien Y, Wang KL, et al. Evaluation of proinflammatory prognostic biomarkers for Fabry cardiomyopathy with enzyme replacement therapy.
Can J Cardiol 2016;32:1221.
27. Sanchez-Niño MD, Sanz AB, Carrasco S, et al. Globotriaosylsphingosine actions on human glomerular podocytes: implications for Fabry nephropathy.
Nephrol Dial Transplant 2011;26:1797–1802.
28. García IM, Altamirano L, Mazzei L, et al. Role of mitochondria in paricalcitol-mediated cytoprotection during obstructive nephropathy.
Am J Physiol Renal Physiol 2012;302:F1595–F1605.
29. Festa BP, Chen Z, Berquez M, et al. Impaired autophagy bridges lysosomal storage disease and epithelial dysfunction in the kidney.
Nat Commun 2018;9:161.
30. Isaka Y, Kimura T, Takabatake Y. The protective role of autophagy against aging and acute ischemic injury in kidney proximal tubular cells.
Autophagy 2011;7:1085–1087.
31. Yamamoto T, Takabatake Y, Kimura T, et al. Time-dependent dysregulation of autophagy: Implications in aging and mitochondrial homeostasis in the kidney proximal tubule.
Autophagy 2016;12:801–813.
32. Kawaoka K, Doi S, Nakashima A, et al. Valproic acid attenuates renal fibrosis through the induction of autophagy.
Clin Exp Nephrol 2017;21:771–780.
33. Du C, Ren Y, Yao F, et al. Sphingosine kinase 1 protects renal tubular epithelial cells from renal fibrosis via induction of autophagy.
Int J Biochem Cell Biol 2017;90:17–28.
34. Du C, Zhang T, Xiao X, Shi Y, Duan H, Ren Y. Protease-activated receptor-2 promotes kidney tubular epithelial inflammation by inhibiting autophagy via the PI3K/Akt/mTOR signalling pathway.
Biochem J 2017;474:2733–2747.
35. Xue X, Ren J, Sun X, et al. Protein kinase Cα drives fibroblast activation and kidney fibrosis by stimulating autophagic flux.
J Biol Chem 2018;293:11119–11130.
36. Li L, Zepeda-Orozco D, Black R, Lin F. Autophagy is a component of epithelial cell fate in obstructive uropathy.
Am J Pathol 2010;176:1767–1778.
37. Qi R, Yang C. Renal tubular epithelial cells: the neglected mediator of tubulointerstitial fibrosis after injury.
Cell Death Dis 2018;9:1126.
38. Zhou Y, Cai T, Xu J, et al. UCP2 attenuates apoptosis of tubular epithelial cells in renal ischemia-reperfusion injury.
Am J Physiol Renal Physiol 2017;313:F926–F937.
39. Zhang QF. Ulinastatin inhibits renal tubular epithelial apoptosis and interstitial fibrosis in rats with unilateral ureteral obstruction.
Mol Med Rep 2017;16:8916–8922.
40. Kim S, Jung ES, Lee J, Heo NJ, Na KY, Han JS. Effects of colchicine on renal fibrosis and apoptosis in obstructed kidneys.
Korean J Intern Med 2018;33:568–576.