1. U.S. Renal Data SystemUSRDS 2013 annual data report: atlas of chronic kidney disease and end-stage renal disease Bethesda: National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, 2013 Available from:
https://www.usrds.org/atlas13.aspx
2. Kim YL. Update on mechanisms of ultrafiltration failure.
Perit Dial Int 2009;29(Suppl 2):S123–S127.
3. Yáñez-Mó M, Lara-Pezzi E, Selgas R, et al. Peritoneal dialysis and epithelial-to-mesenchymal transition of mesothelial cells.
N Engl J Med 2003;348:403–413.
4. Do JY, Kim YL, Park JW, et al. The effect of low glucose degradation product dialysis solution on epithelial-to-mesenchymal transition in continuous ambulatory peritoneal dialysis patients.
Perit Dial Int 2005;25(Suppl 3):S22–S25.
5. Oh EJ, Ryu HM, Choi SY, et al. Impact of low glucose degradation product bicarbonate/lactate-buffered dialysis solution on the epithelial-mesenchymal transition of peritoneum.
Am J Nephrol 2010;31:58–67.
6. Fernández-Perpén A, Pérez-Lozano ML, Bajo MA, et al. Influence of bicarbonate/low-GDP peritoneal dialysis fluid (BicaVera) on in vitro and ex vivo epithelial-to-mesenchymal transition of mesothelial cells.
Perit Dial Int 2012;32:292–304.
7. Cho Y, Johnson DW, Craig JC, Strippoli GF, Badve SV, Wiggins KJ. Biocompatible dialysis fluids for peritoneal dialysis.
Cochrane Database Syst Rev 2014;(3):CD007554.
8. Azuma H, Banno K, Yoshimura T. Pharmacological properties of N-(3′,4′-dimethoxycinnamoyl) anthranilic acid (N-5′), a new anti-atopic agent.
Br J Pharmacol 1976;58:483–488.
9. Suzawa H, Kikuchi S, Arai N, Koda A. The mechanism involved in the inhibitory action of tranilast on collagen biosynthesis of keloid fibroblasts.
Jpn J Pharmacol 1992;60:91–96.
10. Taniguchi S, Yorifuji T, Hamada T. Treatment of linear localized scleroderma with the anti-allergic drug, tranilast.
Clin Exp Dermatol 1994;19:391–393.
11. Darakhshan S, Pour AB. Tranilast: a review of its therapeutic applications.
Pharmacol Res 2015;91:15–28.
12. Kaneyama T, Kobayashi S, Aoyagi D, Ehara T. Tranilast modulates fibrosis, epithelial-mesenchymal transition and peritubular capillary injury in unilateral ureteral obstruction rats.
Pathology 2010;42:564–573.
13. Ohshio Y, Teramoto K, Hashimoto M, Kitamura S, Hanaoka J, Kontani K. Inhibition of transforming growth factor-β release from tumor cells reduces their motility associated with epithelial-mesenchymal transition.
Oncol Rep 2013;30:1000–1006.
14. Li SS, Liu QF, He AL, Wu FR. Tranilast attenuates TGF-β1-induced epithelial-mesenchymal transition in the NRK-52E cells.
Pak J Pharm Sci 2014;27:51–55.
15. Saito H, Fushida S, Harada S, et al. Importance of human peritoneal mesothelial cells in the progression, fibrosis, and control of gastric cancer: inhibition of growth and fibrosis by tranilast.
Gastric Cancer 2018;21:55–67.
16. Kaneko K, Hamada C, Tomino Y. Peritoneal fibrosis intervention.
Perit Dial Int 2007;27(Suppl 2):S82–S86.
17. Kang SH, Kim SO, Cho KH, Park JW, Yoon KW, Do JY. Paricalcitol ameliorates epithelial-to-mesenchymal transition in the peritoneal mesothelium.
Nephron Exp Nephrol 2014;126:1–7.
18. Park SH, Lee EG, Kim IS, Kim YJ, Cho DK, Kim YL. Effect of glucose degradation products on the peritoneal membrane in a chronic inflammatory infusion model of peritoneal dialysis in the rat.
Perit Dial Int 2004;24:115–122.
19. De Vriese AS, Tilton RG, Mortier S, Lameire NH. Myofibroblast transdifferentiation of mesothelial cells is mediated by RAGE and contributes to peritoneal fibrosis in uraemia.
Nephrol Dial Transplant 2006;21:2549–2555.
20. Lan HY. Smads as therapeutic targets for chronic kidney disease.
Kidney Res Clin Pract 2012;31:4–11.
21. Derynck R, Zhang YE. Smad-dependent and Smad-independent pathways in TGF-beta family signalling.
Nature 2003;425:577–584.
23. Wang H, Zhang G, Zhang H, et al. Acquisition of epithelial-mesenchymal transition phenotype and cancer stem cell-like properties in cisplatin-resistant lung cancer cells through AKT/β-catenin/Snail signaling pathway.
Eur J Pharmacol 2014;723:156–166.
24. Tomino Y. Mechanisms and interventions in peritoneal fibrosis.
Clin Exp Nephrol 2012;16:109–114.
25. Ji S, Deng H, Jin W, et al. Beta-catenin participates in dialysate-induced peritoneal fibrosis via enhanced peritoneal cell epithelial-to-mesenchymal transition.
FEBS Open Bio 2017;7:265–273.
26. Yan P, Tang H, Chen X, et al. Tamoxifen attenuates dialysate-induced peritoneal fibrosis by inhibiting GSK-3β/β-catenin axis activation.
Biosci Rep 2018 (38):BSR20180240.
27. Kazama I, Baba A, Endo Y, et al. Mast cell involvement in the progression of peritoneal fibrosis in rats with chronic renal failure.
Nephrology (Carlton) 2015;20:609–616.
28. Chung AC, Lan HY. MicroRNAs in renal fibrosis.
Front Physiol 2015;6:50.
29. Qin W, Chung AC, Huang XR, et al. TGF-β/Smad3 signaling promotes renal fibrosis by inhibiting miR-29.
J Am Soc Nephrol 2011;22:1462–1474.
30. Chuang TD, Khorram O. Tranilast inhibits genes functionally involved in cell proliferation, fibrosis, and epigenetic regulation and epigenetically induces miR-29c expression in leiomyoma cells.
Reprod Sci 2017;24:1253–1263.