1. Kellum JA, Mehta RL, Angus DC, Palevsky P, Ronco C. ADQI Workgroup. The first international consensus conference on continuous renal replacement therapy.
Kidney Int 2002;62:1855–1863.
2. Mehta RL, Kellum JA, Shah SV, et al. Acute Kidney Injury Network. Acute Kidney Injury Network: report of an initiative to improve outcomes in acute kidney injury.
Crit Care 2007;11:R31.
3. Mehta RL, Cerdá J, Burdmann EA, et al. International Society of Nephrology's 0by25 initiative for acute kidney injury (zero preventable deaths by 2025): a human rights case for nephrology.
Lancet 2015;385:2616–2643.
4. Case J, Khan S, Khalid R, Khan A. Epidemiology of acute kidney injury in the intensive care unit.
Crit Care Res Pract 2013 2013:479730.
5. Clermont G, Acker CG, Angus DC, Sirio CA, Pinsky MR, Johnson JP. Renal failure in the ICU: comparison of the impact of acute renal failure and end-stage renal disease on ICU outcomes.
Kidney Int 2002;62:986–996.
6. Hsu RK, Hsu CY. The role of acute kidney injury in chronic kidney disease.
Semin Nephrol 2016;36:283–292.
7. Faubel S, Chawla LS, Chertow GM, Goldstein SL, Jaber BL, Liu KD. Acute Kidney Injury Advisory Group of the American Society of Nephrology. Ongoing clinical trials in AKI.
Clin J Am Soc Nephrol 2012;7:861–873.
8. Bonventre JV, Weinberg JM. Recent advances in the pathophysiology of ischemic acute renal failure.
J Am Soc Nephrol 2003;14:2199–2210.
9. Bonventre JV, Zuk A. Ischemic acute renal failure: an inflammatory disease?
Kidney Int 2004;66:480–485.
10. Devarajan P. Update on mechanisms of ischemic acute kidney injury.
J Am Soc Nephrol 2006;17:1503–1520.
11. Munshi R, Hsu C, Himmelfarb J. Advances in understanding ischemic acute kidney injury.
BMC Med 2011;9:11.
12. Havasi A, Borkan SC. Apoptosis and acute kidney injury.
Kidney Int 2011;80:29–40.
13. Wolfs TG, de Vries B, Walter SJ, et al. Apoptotic cell death is initiated during normothermic ischemia in human kidneys.
Am J Transplant 2005;5:68–75.
14. Han SJ, Jang HS, Noh MR, et al. Mitochondrial NADP+-dependent isocitrate dehydrogenase deficiency exacerbates mitochondrial and cell damage after kidney ischemia-reperfusion injury.
J Am Soc Nephrol 2017;28:1200–1215.
15. Shen S, Zhou J, Meng S, et al. The protective effects of ischemic preconditioning on rats with renal ischemia-reperfusion injury and the effects on the expression of Bcl-2 and Bax.
Exp Ther Med 2017;14:4077–4082.
16. Wei Q, Dong G, Chen JK, Ramesh G, Dong Z. Bax and Bak have critical roles in ischemic acute kidney injury in global and proximal tubule-specific knockout mouse models.
Kidney Int 2013;84:138–148.
17. Vanden Berghe T, Linkermann A, Jouan-Lanhouet S, Walczak H, Vandenabeele P. Regulated necrosis: the expanding network of non-apoptotic cell death pathways.
Nat Rev Mol Cell Biol 2014;15:135–147.
18. Pefanis A, Ierino FL, Murphy JM, Cowan PJ. Regulated necrosis in kidney ischemia-reperfusion injury.
Kidney Int 2019;96:291–301.
19. von Mässenhausen A, Tonnus W, Himmerkus N, et al. Phenytoin inhibits necroptosis.
Cell Death Dis 2018;9:359.
20. Linkermann A, Bräsen JH, Darding M, et al. Two independent pathways of regulated necrosis mediate ischemia-reperfusion injury.
Proc Natl Acad Sci U S A 2013;110:12024–12029.
21. Bonventre JV, Yang L. Cellular pathophysiology of ischemic acute kidney injury.
J Clin Invest 2011;121:4210–4221.
22. Molitoris BA, Sutton TA. Endothelial injury and dysfunction: role in the extension phase of acute renal failure.
Kidney Int 2004;66:496–499.
23. Sutton TA, Kelly KJ, Mang HE, Plotkin Z, Sandoval RM, Dagher PC. Minocycline reduces renal microvascular leakage in a rat model of ischemic renal injury.
Am J Physiol Renal Physiol 2005;288:F91–F97.
24. Kunugi S, Shimizu A, Kuwahara N, et al. Inhibition of matrix metalloproteinases reduces ischemia-reperfusion acute kidney injury.
Lab Invest 2011;91:170–180.
25. Kelly KJ, Williams WW Jr, Colvin RB, et al. Intercellular adhesion molecule-1-deficient mice are protected against ischemic renal injury.
J Clin Invest 1996;97:1056–1063.
26. Kelly KJ, Williams WW Jr, Colvin RB, Bonventre JV. Antibody to intercellular adhesion molecule 1 protects the kidney against ischemic injury.
Proc Natl Acad Sci U S A 1994;91:812–816.
27. Singbartl K, Green SA, Ley K. Blocking P-selectin protects from ischemia/reperfusion-induced acute renal failure.
FASEB J 2000;14:48–54.
28. Kelly KJ, Molitoris BA. Acute renal failure in the new millennium: time to consider combination therapy.
Semin Nephrol 2000;20:4–19.
29. Sharfuddin AA, Molitoris BA. Pathophysiology of ischemic acute kidney injury.
Nat Rev Nephrol 2011;7:189–200.
30. Niemann-Masanek U, Mueller A, Yard BA, Waldherr R, van der Woude FJ. B7–1 (CD80) and B7-2 (CD 86) expression in human tubular epithelial cells in vivo and in vitro.
Nephron 2002;92:542–556.
31. Schofield ZV, Woodruff TM, Halai R, Wu MC, Cooper MA. Neutrophils--a key component of ischemia-reperfusion injury.
Shock 2013;40:463–470.
32. Kinsey GR, Li L, Okusa MD. Inflammation in acute kidney injury.
Nephron Exp Nephrol 2008;109:e102–e107.
33. Frangogiannis NG. Chemokines in ischemia and reperfusion.
Thromb Haemost 2007;97:738–747.
34. Heinzelmann M, Mercer-Jones MA, Passmore JC. Neutrophils and renal failure.
Am J Kidney Dis 1999;34:384–399.
35. Hellberg PO, Källskog TO. Neutrophil-mediated post-ischemic tubular leakage in the rat kidney.
Kidney Int 1989;36:555–561.
36. Thornton MA, Winn R, Alpers CE, Zager RA. An evaluation of the neutrophil as a mediator of in vivo renal ischemic-reperfusion injury.
Am J Pathol 1989;135:509–515.
37. Paller MS. Effect of neutrophil depletion on ischemic renal injury in the rat.
J Lab Clin Med 1989;113:379–386.
38. Nemoto T, Burne MJ, Daniels F, et al. Small molecule selectin ligand inhibition improves outcome in ischemic acute renal failure.
Kidney Int 2001;60:2205–2214.
39. Rabb H, Mendiola CC, Dietz J, et al. Role of CD11a and CD11b in ischemic acute renal failure in rats.
Am J Physiol 1994;267:F1052–F1058.
40. Li L, Huang L, Sung SS, et al. The chemokine receptors CCR2 and CX3CR1 mediate monocyte/macrophage trafficking in kidney ischemia-reperfusion injury.
Kidney Int 2008;74:1526–1537.
41. Oh DJ, Dursun B, He Z, et al. Fractalkine receptor (CX3CR1) inhibition is protective against ischemic acute renal failure in mice.
Am J Physiol Renal Physiol 2008;294:F264–F271.
42. Li L, Okusa MD. Macrophages, dendritic cells, and kidney ischemia-reperfusion injury.
Semin Nephrol 2010;30:268–277.
43. Day YJ, Huang L, Ye H, Linden J, Okusa MD. Renal ischemia-reperfusion injury and adenosine 2A receptor-mediated tissue protection: role of macrophages.
Am J Physiol Renal Physiol 2005;288:F722–F731.
44. Lee S, Huen S, Nishio H, et al. Distinct macrophage phenotypes contribute to kidney injury and repair.
J Am Soc Nephrol 2011;22:317–326.
45. Krüger T, Benke D, Eitner F, et al. Identification and functional characterization of dendritic cells in the healthy murine kidney and in experimental glomerulonephritis.
J Am Soc Nephrol 2004;15:613–621.
46. Dong X, Swaminathan S, Bachman LA, Croatt AJ, Nath KA, Griffin MD. Resident dendritic cells are the predominant TNF-secreting cell in early renal ischemia-reperfusion injury.
Kidney Int 2007;71:619–628.
47. Keller CW, Freigang S, Lünemann JD. Reciprocal crosstalk between dendritic cells and natural killer T cells: mechanisms and therapeutic potential.
Front Immunol 2017;8:570.
48. Li L, Huang L, Sung SS, et al. NKT cell activation mediates neutrophil IFN-gamma production and renal ischemia-reperfusion injury.
J Immunol 2007;178:5899–5911.
49. Takeda K, Akira S. Toll-like receptors in innate immunity.
Int Immunol 2005;17:1–14.
50. Leventhal JS, Schröppel B. Toll-like receptors in transplantation: sensing and reacting to injury.
Kidney Int 2012;81:826–832.
51. Gluba A, Banach M, Hannam S, Mikhailidis DP, Sakowicz A, Rysz J. The role of Toll-like receptors in renal diseases.
Nat Rev Nephrol 2010;6:224–235.
52. Robson MG. Toll-like receptors and renal disease.
Nephron Exp Nephrol 2009;113:e1–e7.
53. Arslan F, Keogh B, McGuirk P, Parker AE. TLR2 and TLR4 in ischemia reperfusion injury.
Mediators Inflamm 2010 2010:704202.
54. Shigeoka AA, Holscher TD, King AJ, et al. TLR2 is constitutively expressed within the kidney and participates in ischemic renal injury through both MyD88-dependent and -independent pathways.
J Immunol 2007;178:6252–6258.
55. Wu H, Chen G, Wyburn KR, et al. TLR4 activation mediates kidney ischemia/reperfusion injury.
J Clin Invest 2007;117:2847–2859.
56. Bamboat ZM, Balachandran VP, Ocuin LM, Obaid H, Plitas G, DeMatteo RP. Toll-like receptor 9 inhibition confers protection from liver ischemia-reperfusion injury.
Hepatology 2010;51:621–632.
57. Huang H, Evankovich J, Yan W, et al. Endogenous histones function as alarmins in sterile inflammatory liver injury through Toll-like receptor 9 in mice.
Hepatology 2011;54:999–1008.
58. Xie L, Liu S, Cheng J, Wang L, Liu J, Gong J. Exogenous administration of mitochondrial DNA promotes ischemia reperfusion injury via TLR9-p38 MAPK pathway.
Regul Toxicol Pharmacol 2017;89:148–154.
59. Zhou Y, Pan J, Peng Q, Dong Z, Deng L, Wang Y. The TLR9 antagonist iCpG-ODN at different dosages inhibits cerebral ischemia/reperfusion injury in mice.
CNS Neurol Disord Drug Targets 2017;16:624–633.
60. Han SJ, Li H, Kim M, D'Agati V, Lee HT. Intestinal Toll-like receptor 9 deficiency leads to Paneth cell hyperplasia and exacerbates kidney, intestine, and liver injury after ischemia/reperfusion injury.
Kidney Int 2019;95:859–879.
61. Bakker PJ, Scantlebery AM, Butter LM, et al. TLR9 mediates remote liver injury following severe renal ischemia reperfusion.
PLoS One 2015;10:e0137511.
62. Li X, Yun Z, Tan Z, et al. The role of Toll-like receptor (TLR) 2 and 9 in renal ischemia and reperfusion injury.
Urology 2013;81:1379.e15–1379.e20.
63. Han SJ, Li H, Kim M, Shlomchik MJ, Lee HT. Kidney proximal tubular TLR9 exacerbates ischemic acute kidney injury.
J Immunol 2018;201:1073–1085.
64. Bauerle JD, Grenz A, Kim JH, Lee HT, Eltzschig HK. Adenosine generation and signaling during acute kidney injury.
J Am Soc Nephrol 2011;22:14–20.
65. Yap SC, Lee HT. Adenosine and protection from acute kidney injury.
Curr Opin Nephrol Hypertens 2012;21:24–32.
66. Eltzschig HK, Ibla JC, Furuta GT, et al. Coordinated adenine nucleotide phosphohydrolysis and nucleoside signaling in posthypoxic endothelium: role of ectonucleotidases and adenosine A2B receptors.
J Exp Med 2003;198:783–796.
67. Lee HT, Xu H, Nasr SH, Schnermann J, Emala CW. A1 adenosine receptor knockout mice exhibit increased renal injury following ischemia and reperfusion.
Am J Physiol Renal Physiol 2004;286:F298–F306.
68. Joo JD, Kim M, Horst P, et al. Acute and delayed renal protection against renal ischemia and reperfusion injury with A1 adenosine receptors.
Am J Physiol Renal Physiol 2007;293:F1847–F1857.
69. Kim M, Chen SW, Park SW, et al. Kidney-specific reconstitution of the A1 adenosine receptor in A1 adenosine receptor knockout mice reduces renal ischemia-reperfusion injury.
Kidney Int 2009;75:809–823.
70. Day YJ, Huang L, McDuffie MJ, et al. Renal protection from ischemia mediated by A2A adenosine receptors on bone marrow-derived cells.
J Clin Invest 2003;112:883–891.
71. Day YJ, Huang L, Ye H, Li L, Linden J, Okusa MD. Renal ischemia-reperfusion injury and adenosine 2A receptor-mediated tissue protection: the role of CD4+ T cells and IFN-gamma.
J Immunol 2006;176:3108–3114.
72. Grenz A, Osswald H, Eckle T, et al. The reno-vascular A2B adenosine receptor protects the kidney from ischemia.
PLoS Med 2008;5:e137.
73. Lee HT, Ota-Setlik A, Xu H, D'Agati VD, Jacobson MA, Emala CW. A3 adenosine receptor knockout mice are protected against ischemia- and myoglobinuria-induced renal failure.
Am J Physiol Renal Physiol 2003;284:F267–F273.
74. Lee HT, Emala CW. Protective effects of renal ischemic preconditioning and adenosine pretreatment: role of A(1) and A(3) receptors.
Am J Physiol Renal Physiol 2000;278:F380–F387.
75. Lee HT, Kim M, Joo JD, Gallos G, Chen JF, Emala CW. A3 adenosine receptor activation decreases mortality and renal and hepatic injury in murine septic peritonitis.
Am J Physiol Regul Integr Comp Physiol 2006;291:R959–R969.
76. Ohana G, Cohen S, Rath-Wolfson L, Fishman P. A3 adenosine receptor agonist, CF102, protects against hepatic ischemia/reperfusion injury following partial hepatectomy.
Mol Med Rep 2016;14:4335–4341.
77. Maddock HL, Gardner NM, Khandoudi N, Bril A, Broadley KJ. Protection from myocardial stunning by ischaemia and hypoxia with the adenosine A3 receptor agonist, IBMECA.
Eur J Pharmacol 2003;477:235–245.
78. Koo TY, Lee JG, Yan JJ, et al. The P2X7 receptor antagonist, oxidized adenosine triphosphate, ameliorates renal ischemia-reperfusion injury by expansion of regulatory T cells.
Kidney Int 2017;92:415–431.
79. Yan Y, Bai J, Zhou X, et al. P2X7 receptor inhibition protects against ischemic acute kidney injury in mice.
Am J Physiol Cell Physiol 2015;308:C463–C472.
80. Rabadi M, Kim M, D'Agati V, Lee HT. Peptidyl arginine deiminase-4-deficient mice are protected against kidney and liver injury after renal ischemia and reperfusion.
Am J Physiol Renal Physiol 2016;311:F437–F449.
81. Ham A, Rabadi M, Kim M, et al. Peptidyl arginine deiminase-4 activation exacerbates kidney ischemia-reperfusion injury.
Am J Physiol Renal Physiol 2014;307:F1052–F1062.
82. Rabadi M, Kim M, Li H, et al. ATP induces PAD4 in renal proximal tubule cells via P2X7 receptor activation to exacerbate ischemic AKI.
Am J Physiol Renal Physiol 2018;314:F293–F305.
83. Rabadi MM, Han SJ, Kim M, D'Agati V, Lee HT. Peptidyl arginine deiminase-4 exacerbates ischemic AKI by finding NEMO.
Am J Physiol Renal Physiol 2019;316:F1180–F1190.
84. Faubel S, Shah PB. Immediate consequences of acute kidney injury: the impact of traditional and nontraditional complications on mortality in acute kidney injury.
Adv Chronic Kidney Dis 2016;23:179–185.
85. Cario E. Bacterial interactions with cells of the intestinal mucosa: toll-like receptors and NOD2.
Gut 2005;54:1182–1193.
86. Park SW, Kim M, Kim JY, et al. Paneth cell-mediated multiorgan dysfunction after acute kidney injury.
J Immunol 2012;189:5421–5433.
87. Park SW, Kim M, Brown KM, D'Agati VD, Lee HT. Paneth cell-derived interleukin-17A causes multiorgan dysfunction after hepatic ischemia and reperfusion injury.
Hepatology 2011;53:1662–1675.
88. Lee HT, Kim M, Kim JY, et al. Critical role of interleukin-17A in murine intestinal ischemia-reperfusion injury.
Am J Physiol Gastrointest Liver Physiol 2013;304:G12–G25.
89. Jang HR, Gandolfo MT, Ko GJ, Satpute S, Racusen L, Rabb H. Early exposure to germs modifies kidney damage and inflammation after experimental ischemia-reperfusion injury.
Am J Physiol Renal Physiol 2009;297:F1457–F1465.
90. Andrade-Oliveira V, Amano MT, Correa-Costa M, et al. Gut bacteria products prevent AKI induced by ischemia-reperfusion.
J Am Soc Nephrol 2015;26:1877–1888.
91. Emal D, Rampanelli E, Stroo I, et al. Depletion of gut microbiota protects against renal ischemia-reperfusion injury.
J Am Soc Nephrol 2017;28:1450–1461.