1. Eddy AA. Molecular basis of renal fibrosis.
Pediatr Nephrol 15:290–301. 2000;
2. Iwano M, Plieth D, Danoff TM, Xue C, Okada H, Neilson EG. Evidence that fibroblasts derive from epithelium during tissue fibrosis.
J Clin Invest 110:341–350. 2002;
3. Medici D, Shore EM, Lounev VY, Kaplan FS, Kalluri R, Olsen BR. Conversion of vascular endothelial cells into multi-potent stem-like cells.
Nat Med 16:1400–1406. 2010;
4. Zeisberg EM, Tarnavski O, Zeisberg M, et al. Endothelial-to-mesenchymal transition contributes to cardiac fibrosis.
Nat Med 13:952–961. 2007;
5. Campbell WB, Gebremedhin D, Pratt PF, Harder DR. Identification of epoxyeicosatrienoic acids as endothelium-derived hyperpolarizing factors.
Circ Res 78:415–423. 1996;
6. Imig JD. Epoxide hydrolase and epoxygenase metabolites as therapeutic targets for renal diseases.
Am J Physiol Renal Physiol 289:F496–F503. 2005;
7. Lee JP, Yang SH, Kim DK, Lee H, Kim B, Cho JY, et al. In vivo activity of epoxide hydrolase according to sequence variation affects the progression of human IgA nephropathy.
Am J Physiol Renal Physiol 300:F1283–F1290. 2011;
8. Lee JP, Yang SH, Lee HY, et al. Soluble epoxide hydrolase activity determines the severity of ischemia-reperfusion injury in kidney.
PLoS One 7:e37075.2012;
9. McPherson C. Regulation of animal care and research? NIH’s opinion.
J Anim Sci 51:492–496. 1980;
10. Kim IH, Nishi K, Tsai HJ, et al. Design of bioavailable derivatives of 12-(3-adamantan-1-yl-ureido)dodecanoic acid, a potent inhibitor of the soluble epoxide hydrolase.
Bioorg Med Chem 15:312–323. 2007;
11. Jung O, Brandes RP, Kim IH, et al. Soluble epoxide hydrolase is a main effector of angiotensin II-induced hypertension.
Hypertension 45:759–765. 2005;
12. Zhang W, Koerner IP, Noppens R, et al. Soluble epoxide hydrolase: a novel therapeutic target in stroke.
J Cereb Blood Flow Metab 27:1931–1940. 2007;
13. Gadola L, Noboa O, Márquez MN, et al. Calcium citrate ameliorates the progression of chronic renal injury.
Kidney Int 65:1224–1230. 2004;
14. Yang SH, Lee JP, Jang HR, et al. Sulfatide-reactive natural killer T cells abrogate ischemia-reperfusion injury.
J Am Soc Nephrol 22:1305–1314. 2011;
15. Wynn TA, Ramalingam TR. Mechanisms of fibrosis: therapeutic translation for fibrotic disease.
Nat Med 18:1028–1040. 2012;
16. Zeisberg M, Kalluri R. The role of epithelial-to-mesenchymal transition in renal fibrosis.
J Mol Med (Berl) 82:175–181. 2004;
17. Zeisberg M, Kalluri R. Fibroblasts emerge via epithelial-mesenchymal transition in chronic kidney fibrosis.
Front Biosci 13:6991–6998. 2008;
18. Sanford LP, Ormsby I, Gittenbergerde Groot AC, et al. TGFbeta2 knockout mice have multiple developmental defects that are non-overlapping with other TGFbeta knockout phenotypes.
Development 124:2659–2670. 1997;
19. Zeisberg EM, Potenta S, Xie L, Zeisberg M, Kalluri R. Discovery of endothelial to mesenchymal transition as a source for carcinoma-associated fibroblasts.
Cancer Res 67:10123–10128. 2007;
20. Li J, Qu X, Bertram JF. Endothelial-myofibroblast transition contributes to the early development of diabetic renal interstitial fibrosis in streptozotocin-induced diabetic mice.
Am J Pathol 175:1380–1388. 2009;
21. Zeisberg EM, Potenta SE, Sugimoto H, Zeisberg M, Kalluri R. Fibroblasts in kidney fibrosis emerge via endothelial-to-mesenchymal transition.
J Am Soc Nephrol 19:2282–2287. 2008;
22. Olearczyk JJ, Quigley JE, Mitchell BC, et al. Administration of a substituted adamantyl urea inhibitor of soluble epoxide hydrolase protects the kidney from damage in hypertensive Goto-Kakizaki rats.
Clin Sci (Lond) 116:61–70. 2009;
23. Kompa AR, Wang BH, Xu G, et al. Soluble epoxide hydrolase inhibition exerts beneficial anti-remodeling actions post-myocardial infarction.
Int J Cardiol 167:210–219. 2013;
24. Jung O, Jansen F, Mieth A, et al. Inhibition of the soluble epoxide hydrolase promotes albuminuria in mice with progressive renal disease.
PLoS One 5:e11979.2010;
25. Kida Y, Duffield JS. Pivotal role of pericytes in kidney fibrosis.
Clin Exp Pharmacol Physiol 38:467–473. 2011;
26. Bohle A, Mackensen-Haen S, von Gise H, et al. The consequences of tubulo-interstitial changes for renal function in glomerulopathies. A morphometric and cytological analysis.
Pathol Res Pract 186:135–144. 1990;
27. Kang DH, Kanellis J, Hugo C, et al. Role of the microvascular endothelium in progressive renal disease.
J Am Soc Nephrol 13:806–816. 2002;
28. Chen G, Wang P, Zhao G, et al. Cytochrome P450 epoxy-genase CYP2J2 attenuates nephropathy in streptozotocin-induced diabetic mice.
Prostaglandins Other Lipid Mediat 96:63–71. 2011;