1. Zarbock A, Gomez H, Kellum JA. Sepsis-induced acute kidney injury revisited: pathophysiology, prevention and future therapies.
Curr Opin Crit Care 20:588–595. 2014;
2. Koçkara A, Kayata M. Renal cell apoptosis and new treatment options in sepsis-induced acute kidney injury.
Ren Fail 35:291–294. 2013;
3. Jo SK, Cha DR, Cho WY, Kim HK, Chang KH, Yun SY, Won NH. Inflammatory cytokines and lipopolysaccharide induce Fas-mediated apoptosis in renal tubular cells.
Nephron 91:406–415. 2002;
4. Doi K, Leelahavanichkul A, Yuen PS, Star RA. Animal models of sepsis and sepsis-induced kidney injury.
J Clin Invest 119:2868–2878. 2009;
5. Hotchkiss RS, Nicholson DW. Apoptosis and caspases regulate death and inflammation in sepsis.
Nat Rev Immunol 6:813–822. 2006;
6. Sanchez-Niño MD, Bozic M, Córdoba-Lanús E, Valcheva P, Gracia O, Ibarz M, Fernandez E, Navarro-Gonzalez JF, Ortiz A, Valdivielso JM. Beyond proteinuria: VDR activation reduces renal inflammation in experimental diabetic nephropathy.
Am J Physiol Renal Physiol 302:F647–F657. 2012;
7. Tan X, Wen X, Liu Y. Paricalcitol inhibits renal inflammation by promoting vitamin D receptor-mediated sequestration of NF-kappaB signaling.
J Am Soc Nephrol 19:1741–1752. 2008;
8. Hwang HS, Yang KJ, Park KC, Choi HS, Kim SH, Hong SY, Jeon BH, Chang YK, Park CW, Kim SY, Lee SJ, Yang CW. Pretreatment with paricalcitol attenuates inflammation in ischemia-reperfusion injury via the up-regulation of cyclooxygenase-2 and prostaglandin E2.
Nephrol Dial Transplant 28:1156–1166. 2013;
9. Aoudjit L, Potapov A, Takano T. Prostaglandin E2 promotes cell survival of glomerular epithelial cells via the EP4 receptor.
Am J Physiol Renal Physiol 290:F1534–F1542. 2006;
10. Minami M, Shimizu K, Okamoto Y, Folco E, Ilasaca ML, Feinberg MW, Aikawa M, Libby P. Prostaglandin E receptor type 4-associated protein interacts directly with NF-kappaB1 and attenuates macrophage activation.
J Biol Chem 283:9692–9703. 2008;
11. George RJ, Sturmoski MA, Anant S, Houchen CW. EP4 mediates PGE2 dependent cell survival through the PI3 kinase/AKT pathway.
Prostaglandins Other Lipid Mediat 83:112–120. 2007;
12. Xie L, Zheng X, Qin J, Chen Z, Jin Y, Ding W. Role of PI3-kinase/Akt signalling pathway in renal function and cell proliferation after renal ischaemia/reperfusion injury in mice.
Nephrology (Carlton) 11:207–212. 2006;
13. Takayama K, García-Cardena G, Sukhova GK, Comander J, Gimbrone MA Jr, Libby P. Prostaglandin E2 suppresses chemokine production in human macrophages through the EP4 receptor.
J Biol Chem 277:44147–44154. 2002;
14. Zahner G, Schaper M, Panzer U, Kluger M, Stahl RA, Thaiss F, Schneider A. Prostaglandin EP2 and EP4 receptors modulate expression of the chemokine CCL2 (MCP-1) in response to LPS-induced renal glomerular inflammation.
Biochem J 422:563–570. 2009;
15. Fujino H, West KA, Regan JW. Phosphorylation of glycogen synthase kinase-3 and stimulation of T-cell factor signaling following activation of EP2 and EP4 prostanoid receptors by prostaglandin E2.
J Biol Chem 277:2614–2619. 2002;
16. Araki Y, Okamura S, Hussain SP, Nagashima M, He P, Shiseki M, Miura K, Harris CC. Regulation of cyclooxygenase-2 expression by the Wnt and ras pathways.
Cancer Res 63:728–734. 2003;
17. Regan JW. EP2 and EP4 prostanoid receptor signaling.
Life Sci 74:143–153. 2003;
18. Guijarro C, Egido J. Transcription factor-kappa B (NF-kappa B) and renal disease.
Kidney Int 59:415–424. 2001;
19. Park JW, Bae EH, Kim IJ, Ma SK, Choi C, Lee J, Kim SW. Paricalcitol attenuates cyclosporine-induced kidney injury in rats.
Kidney Int 77:1076–1085. 2010;
20. Lee JW, Kim SC, Ko YS, Lee HY, Cho E, Kim MG, Jo SK, Cho WY, Kim HK. Renoprotective effect of paricalcitol via a modulation of the TLR4-NF-κB pathway in ischemia/ reperfusion-induced acute kidney injury.
Biochem Biophys Res Commun 444:121–127. 2014;
21. Havasi A, Borkan SC. Apoptosis and acute kidney injury.
Kidney Int 80:29–40. 2011;
22. Arany I, Megyesi JK, Reusch JE, Safirstein RL. CREB mediates ERK-induced survival of mouse renal tubular cells after oxidant stress.
Kidney Int 68:1573–1582. 2005;
23. Ting HJ, Yasmin-Karim S, Yan SJ, Hsu JW, Lin TH, Zeng W, Messing J, Sheu TJ, Bao BY, Li WX, Messing E, Lee YF. A positive feedback signaling loop between ATM and the vitamin D receptor is critical for cancer chemoprevention by vitamin D.
Cancer Res 72:958–968. 2012;
24. Malloy PJ, Feldman D. Inactivation of the human vitamin D receptor by caspase-3.
Endocrinology 150:679–686. 2009;
25. Piao SG, Song JC, Lim SW, Chung BH, Choi BS, Yang CW. Protective effect of paricalcitol on cyclosporine-induced renal injury in rats.
Transplant Proc 44:642–645. 2012;
26. Maestro B, Dávila N, Carranza MC, Calle C. Identification of a Vitamin D response element in the human insulin receptor gene promoter.
J Steroid Biochem Mol Biol 84:223–230. 2003;
27. Li JJ, Kim RH, Zhang Q, Ogata Y, Sodek J. Characteristics of vitamin D3 receptor (VDR) binding to the vitamin D response element (VDRE) in rat bone sialoprotein gene promoter.
Eur J Oral Sci 106:Suppl 1. 408–417. 1998;
29. Ko EJ, Kim BH, Jeong HY, Soe SU, Yang DH, Lee SY. Serum 25-hydroxyvitamin D as a predictor of hospitalization-free survival in predialysis and dialysis patients with chronic kidney disease: a single-center prospective observational analysis.
Kidney Res Clin Pract 35:22–28. 2016;
30. Braun A, Chang D, Mahadevappa K, Gibbons FK, Liu Y, Giovannucci E, Christopher KB. Association of low serum 25-hydroxyvitamin D levels and mortality in the critically ill.
Crit Care Med 39:671–677. 2011;
31. Braun AB, Litonjua AA, Moromizato T, Gibbons FK, Giovannucci E, Christopher KB. Association of low serum 25-hydroxyvitamin D levels and acute kidney injury in the critically ill.
Crit Care Med 40:3170–3179. 2012;