1. Zhong M.F., Shen W.L., Wang J., Yang J., Yuan W.J., He J., Wu P.P., Wang Y., Zhang L., Higashino H., Chen H.. Paradoxical effects of streptozotocin-induced diabetes on endothelial dysfunction in stroke-prone spontaneously hypertensive rats.
J Physiol 589:2011;5153–5165.
2. Lüscher T.F., Raij L., Vanhoutte P.M.. Endothelium-dependent responses in normotensive and hypertensive Dahl rats.
Hypertension 9:1987;157–163.
3. Dohi Y., Kojima M., Sato K.. Endothelial modulation of contractile responses in arteries from hypertensive rats.
Hypertension 28:1996;732–737.
4. Callera G.E., Varanda W.A., Bendhack L.M.. Impaired relaxation to acetylcholine in 2K-1C hypertensive rat aortas involves an abnormal contribution of endothelial factors.
Gen Pharmacol 34:2000;379–389.
5. Cai H., Harrison D.G.. Endothelial dysfunction in cardiovascular diseases: the role of oxidant stress.
Circ Res 87:2000;840–844.
6. Griendling K.K., Minieri C.A., Ollerenshaw J.D., Alexander R.W.. Angiotensin II stimulates NADH and NADPH oxidase activity in cultured vascular smooth muscle cells.
Circ Res 74:1994;1141–1148.
7. Toba H., Kojima Y., Wang J., Noda K., Tian W., Kobara M., Nakata T.. Erythropoietin attenuated vascular dysfunction and inflammation by inhibiting NADPH oxidase-derived superoxide production in nitric oxide synthase-inhibited hypertensive rat aorta.
Eur J Pharmacol 691:2012;190–197.
8. Arnalich-Montiel A., González M.C., Delgado-Baeza E., Delgado-Martos M.J., Condezo-Hoyos L., Martos-Rodríguez A., Rodríguez-Rodríguez P., Quintana-Villamandos B.. Short-term esmolol improves coronary artery remodeling in spontaneously hypertensive rats through increased nitric oxide bioavailability and superoxide dismutase activity.
Biomed Res Int 531087:2014;1–9.
9. Lerman L.O., Nath K.A., Rodriguez-Porcel M., Krier J.D., Schwartz R.S., Napoli C., Romero J.C.. Increased oxidative stress in experimental renovascular hypertension.
Hypertension 37:2001;541–546.
10. Oliveira-Sales E.B., Nishi E.E., Carillo B.A., Boim M.A., Dolnikoff M.S., Bergamaschi C.T., Campos R.R.. Oxidative stress in the sympathetic premotor neurons contributes to sympathetic activation in renovascular hypertension.
Am J Hypertens 22:2009;484–492.
11. Ibarra M., Moreno L., Vera R., Cogolludo A., Duarte J., Tamargo J., Perez-Vizcaino F.. Effects of the flavonoid quercetin and its methylated metabolite isorhamnetin in isolated arteries from spontaneously hypertensive rats.
Planta Med 69:2003;995–1000.
12. García-Saura M.F., Galisteo M., Villar I.C., Bermejo A., Zarzuelo A., Vargas F., Duarte J.. Effects of chronic quercetin treatment in experimental renovascular hypertension.
Mol Cell Biochem 270:2005;147–155.
13. Mackraj I., Govender T., Ramesar S.. The antihypertensive effects of quercetin in a salt-sensitive model of hypertension.
J Cardiovasc Pharmacol 51:2008;239–245.
14. Cook N.C., Samman S.. Flavonoids–chemistry, metabolism, cardioprotective effects, and dietary sources.
Nutr Biochem 7:1996;66–76.
15. Nijveldt R.J., van Nood E., van Hoorn D.E., Boelens P.G., van Norren K., van Leeuwen P.A.. Flavonoids: a review of probable mechanisms of action and potential applications.
Am J Clin Nutr 74:2001;418–425.
16. Galisteo M., García-Saura M.F., Jiménez R., Villar I.C., Wangensteen R., Zarzuelo A., Vargas F., Duarte J.. Effects of quercetin treatment on vascular function in deoxycorticosterone acetate-salt hypertensive rats. Comparative study with verapamil.
Planta Med 70:2004;334–341.
17. Ajay M., Achike F.I., Mustafa A.M., Mustafa M.R.. Direct effects of quercetin on impaired reactivity of spontaneously hypertensive rat aortae: comparative study with ascorbic acid.
Clin Exp Pharmacol Physiol 33:2006;345–350.
18. Montenegro M.F., Neto-Neves E.M., Dias-Junior C.A., Ceron C.S., Castro M.M., Gomes V.A., Kanashiro A., Tanus-Santos J.E.. Quercetin restores plasma nitrite and nitroso species levels in renovascular hypertension.
Naunyn Schmiedebergs Arch Pharmacol 382:2010;293–301.
19. Sigmon D.H., Beierwaltes W.H.. Influence of nitric oxide in the chronic phase of two-kidney one clip renovascular hypertension.
Hypertension 31:1998;649–656.
20. Vanhoutte P.M.. Endothelial dysfunction in hypertension. J Hypertens Suppl 14:1996;S83–S93.
21. Choi S., Jung W.S., Cho N.S., Ryu K.H., Jun J.Y., Shin B.C., Chung J.H., Yeum C.H.. Mechanisms of phytoestrogen biochanin A-induced vasorelaxation in renovascular hypertensive rats.
Kidney Res Clin Pract 33:2014;181–186.
22. Diederich D., Yang Z.H., Bühler F.R., Lüscher T.F.. Impaired endothelium-dependent relaxations in hypertensive resistance arteries involve cyclooxygenase pathway.
Am J Physiol 258:1990;H445–H451.
23. Cuzzocrea S., Mazzon E., Dugo L., Di Paola R., Caputi A.P., Salvemini D.. Superoxide: a key player in hypertension.
FASEB J 18:2004;94–101.
24. Touyz R.M.. Reactive oxygen species, vascular oxidative stress, and redox signaling in hypertension: what is the clinical significance?
Hypertension 44:2004;248–252.
25. Bohr D.F., Dominiczak A.F., Webb R.C.. Pathophysiology of the vasculature in hypertension.
Hypertension 18(Suppl 5):1991;III69–III75.
26. Jun J.Y., Yeum C.H., Moon S.H., Cho C.H., Jun K.B., Chung J.H., Yoon P.J.. Altered endothelial modulation of vasoconstriction in chronic two-kidney, one clip hypertensive rats. Kor J Nephrol 20:2001;381–392.
27. Oliveira-Sales E.B., Colombari D.S., Davisson R.L., Kasparov S., Hirata A.E., Campos R.R., Paton J.F.. Kidney-induced hypertension depends on superoxide signaling in the rostral ventrolateral medulla.
Hypertension 56:2010;290–296.
28. Han Y., Fan Z.D., Yuan N., Xie G.Q., Gao J., De W., Gao X.Y., Zhu G.Q.. Superoxide anions in the paraventricular nucleus mediate the enhanced cardiac sympathetic afferent reflex and sympathetic activity in renovascular hypertensive rats.
J Appl Physiol 110:2011;646–652.
29. Choi S., Shin H.R., Kim S.H., Lee M.J., Jun J.Y., Kim H.L., Chung J.H., Yeum C.H.. Effects of oxidative stress on endothelial modulation of contractions in aorta from renal hypertensive rats.
Kidney Res Clin Pract 33:2014;19–25.