1. Pizzino G, Irrera N, Cucinotta M, et al. Oxidative stress: harms and benefits for human health.
Oxid Med Cell Longev 2017 2017:8416763.
2. Madamanchi NR, Vendrov A, Runge MS. Oxidative stress and vascular disease.
Arterioscler Thromb Vasc Biol 2005;25:29–38.
3. Kattoor AJ, Pothineni NVK, Palagiri D, Mehta JL. Oxidative stress in atherosclerosis.
Curr Atheroscler Rep 2017;19:42.
4. Sinha N, Dabla PK. Oxidative stress and antioxidants in hypertension-a current review.
Curr Hypertens Rev 2015;11:132–142.
5. Alahmar AT. The effects of oral antioxidants on the semen of men with idiopathic oligoasthenoteratozoospermia.
Clin Exp Reprod Med 2018;45:57–66.
6. Basile DP, Bonventre JV, Mehta R, et al. ADQI XIII Work Group. Progression after AKI: understanding maladaptive repair processes to predict and identify therapeutic treatments.
J Am Soc Nephrol 2016;27:687–697.
7. Nangaku M, Hirakawa Y, Mimura I, Inagi R, Tanaka T. Epigenetic changes in the acute kidney injury-to-chronic kidney disease transition.
Nephron 2017;137:256–259.
8. Fisher AB, Beers MF. Hyperoxia and acute lung injury.
Am J Physiol Lung Cell Mol Physiol 2008;295:L1066.
9. Farías JG, Herrera EA, Carrasco-Pozo C, et al. Pharmacological models and approaches for pathophysiological conditions associated with hypoxia and oxidative stress.
Pharmacol Ther 2016;158:1–23.
10. Nangaku M. Chronic hypoxia and tubulointerstitial injury: a final common pathway to end-stage renal failure.
J Am Soc Nephrol 2006;17:17–25.
11. Mimura I, Nangaku M. The suffocating kidney: tubulointerstitial hypoxia in end-stage renal disease.
Nat Rev Nephrol 2010;6:667–678.
12. Elmarakby AA, Sullivan JC. Relationship between oxidative stress and inflammatory cytokines in diabetic nephropathy.
Cardiovasc Ther 2012;30:49–59.
13. Tanaka S, Tanaka T, Nangaku M. Hypoxia and hypoxia-inducible factors in chronic kidney disease.
Ren Replace Ther 2016;2:25.
14. Welch WJ, Baumgärtl H, Lübbers D, Wilcox CS. Nephron pO2 and renal oxygen usage in the hypertensive rat kidney.
Kidney Int 2001;59:230–237.
15. Zhang JL, Morrell G, Rusinek H, et al. Measurement of renal tissue oxygenation with blood oxygen level-dependent MRI and oxygen transit modeling.
Am J Physiol Renal Physiol 2014;306:F579–F587.
16. van Bommel J, Siegemund M, Henny ChP, Ince C. Heart, kidney, and intestine have different tolerances for anemia.
Transl Res 2008;151:110–117.
17. Hirakawa Y, Tanaka T, Nangaku M. Renal hypoxia in CKD; pathophysiology and detecting methods.
Front Physiol 2017;8:99.
18. Ow CPC, Ngo JP, Ullah MM, et al. Absence of renal hypoxia in the subacute phase of severe renal ischemia-reperfusion injury.
Am J Physiol Renal Physiol 2018;315:F1358–F1369.
19. Ow CP, Abdelkader A, Hilliard LM, Phillips JK, Evans RG. Determinants of renal tissue hypoxia in a rat model of polycystic kidney disease.
Am J Physiol Regul Integr Comp Physiol 2014;307:R1207–R1215.
20. Cruces P, Lillo P, Salas C, et al. Renal decapsulation prevents intrinsic renal compartment syndrome in ischemia-reperfusion-induced acute kidney injury: a physiologic approach.
Crit Care Med 2018;46:216–222.
21. Inoue T, Kozawa E, Okada H, et al. Noninvasive evaluation of kidney hypoxia and fibrosis using magnetic resonance imaging.
J Am Soc Nephrol 2011;22:1429–1434.
22. Michaely HJ, Metzger L, Haneder S, Hansmann J, Schoenberg SO, Attenberger UI. Renal BOLD-MRI does not reflect renal function in chronic kidney disease.
Kidney Int 2012;81:684–689.
23. Pruijm M, Milani B, Pivin E, et al. Reduced cortical oxygenation predicts a progressive decline of renal function in patients with chronic kidney disease.
Kidney Int 2018;93:932–940.
24. Sugiyama K, Inoue T, Kozawa E, et al. Reduced oxygenation but not fibrosis defined by functional magnetic resonance imaging predicts the long-term progression of chronic kidney disease.
Nephrol Dial Transplant 2018 Nov 12 [Epub].
25. Varia MA, Calkins-Adams DP, Rinker LH, et al. Pimonidazole: a novel hypoxia marker for complementary study of tumor hypoxia and cell proliferation in cervical carcinoma.
Gynecol Oncol 1998;71:270–277.
26. Piert M, Machulla HJ, Picchio M, et al. Hypoxia-specific tumor imaging with 18F-fluoroazomycin arabinoside.
J Nucl Med 2005;46:106–113.
27. Yoshihara T, Hosaka M, Terata M, et al. Intracellular and in vivo oxygen sensing using phosphorescent Ir(III) complexes with a modified acetylacetonato ligand.
Anal Chem 2015;87:2710–2717.
28. Hirakawa Y, Yoshihara T, Kamiya M, et al. Quantitating intracellular oxygen tension in vivo by phosphorescence lifetime measurement.
Sci Rep 2015;5:17838.
29. Hirakawa Y, Mizukami K, Yoshihara T, et al. Intravital phosphorescence lifetime imaging of the renal cortex accurately measures renal hypoxia.
Kidney Int 2018;93:1483–1489.
30. International Society of NephrologyChronic kidney disease [Internet] Brussels: International Society of Nephrology, [cited 2019 April 18]. Available from:
https://www.theisn.org/focus/ckd
31. He L, Wei Q, Liu J, et al. AKI on CKD: heightened injury, suppressed repair, and the underlying mechanisms.
Kidney Int 2017;92:1071–1083.
32. Ow CPC, Ngo JP, Ullah MM, Hilliard LM, Evans RG. Renal hypoxia in kidney disease: cause or consequence?
Acta Physiol (Oxf) 2018;222:e12999.
33. Tanaka S, Tanaka T, Nangaku M. Hypoxia as a key player in the AKI-to-CKD transition.
Am J Physiol Renal Physiol 2014;307:F1187–F1195.
34. Shu S, Wang Y, Zheng M, et al. Hypoxia and hypoxia-inducible factors in kidney injury and repair.
Cells 2019;8:E207.
35. Mimura I, Tanaka T, Nangaku M. New insights into molecular mechanisms of epigenetic regulation in kidney disease.
Clin Exp Pharmacol Physiol 2016;43:1159–1167.
36. Jha JC, Banal C, Chow BS, Cooper ME, Jandeleit-Dahm K. Diabetes and kidney disease: role of oxidative stress.
Antioxid Redox Signal 2016;25:657–684.
37. Xu GW, Yao QH, Weng QF, Su BL, Zhang X, Xiong JH. Study of urinary 8-hydroxydeoxyguanosine as a biomarker of oxidative DNA damage in diabetic nephropathy patients.
J Pharm Biomed Anal 2004;36:101–104.
38. Wu LL, Chiou CC, Chang PY, Wu JT. Urinary 8-OHdG: a marker of oxidative stress to DNA and a risk factor for cancer, atherosclerosis and diabetics.
Clin Chim Acta 2004;339:1–9.
39. Fonseca I, Reguengo H, Almeida M, et al. Oxidative stress in kidney transplantation: malondialdehyde is an early predictive marker of graft dysfunction.
Transplantation 2014;97:1058–1065.
40. Arsov S, Graaff R, van Oeveren W, et al. Advanced glycation end-products and skin autofluorescence in end-stage renal disease: a review.
Clin Chem Lab Med 2014;52:11–20.
41. Smit AJ, Gerrits EG. Skin autofluorescence as a measure of advanced glycation endproduct deposition: a novel risk marker in chronic kidney disease.
Curr Opin Nephrol Hypertens 2010;19:527–533.
42. Noordzij MJ, Lefrandt JD, Smit AJ. Advanced glycation end products in renal failure: an overview.
J Ren Care 2008;34:207–212.
43. Moselhy HF, Reid RG, Yousef S, Boyle SP. A specific, accurate, and sensitive measure of total plasma malondialdehyde by HPLC.
J Lipid Res 2013;54:852–858.
44. Boersema J, de Vos LC, Links TP, et al. Skin accumulation of advanced glycation end products is increased in patients with an abdominal aortic aneurysm.
J Vasc Surg 2017;66:1696–1703.e1.
45. Tello D, Balsa E, Acosta-Iborra B, et al. Induction of the mitochondrial NDUFA4L2 protein by HIF-1α decreases oxygen consumption by inhibiting Complex I activity.
Cell Metab 2011;14:768–779.
46. Fukuda R, Zhang H, Kim JW, Shimoda L, Dang CV, Semenza GL. HIF-1 regulates cytochrome oxidase subunits to optimize efficiency of respiration in hypoxic cells.
Cell 2007;129:111–122.
47. Katavetin P, Tungsanga K, Eiam-Ong S, Nangaku M. Anti-oxidative effects of erythropoietin.
Kidney Int Suppl 2007;107:S10–S15.
48. Forbes JM, Coughlan MT, Cooper ME. Oxidative stress as a major culprit in kidney disease in diabetes.
Diabetes 2008;57:1446–1454.
49. Nordquist L, Friederich-Persson M, Fasching A, et al. Activation of hypoxia-inducible factors prevents diabetic nephropathy.
J Am Soc Nephrol 2015;26:328–338.
50. Nezu M, Suzuki N, Yamamoto M. Targeting the KEAP1-NRF2 system to prevent kidney disease progression.
Am J Nephrol 2017;45:473–483.
51. Grynberg K, Ma FY, Nikolic-Paterson DJ. The JNK signaling pathway in renal fibrosis.
Front Physiol 2017;8:829.
52. Palm F, Nangaku M, Fasching A, et al. Uremia induces abnormal oxygen consumption in tubules and aggravates chronic hypoxia of the kidney via oxidative stress.
Am J Physiol Renal Physiol 2010;299:F380–F386.
53. Cristóbal-García M, García-Arroyo FE, Tapia E, et al. Renal oxidative stress induced by long-term hyperuricemia alters mitochondrial function and maintains systemic hypertension.
Oxid Med Cell Longev 2015 2015:535686.
54. Guzy RD, Schumacker PT. Oxygen sensing by mitochondria at complex III: the paradox of increased reactive oxygen species during hypoxia.
Exp Physiol 2006;91:807–819.
55. Friederich-Persson M, Thörn E, Hansell P, Nangaku M, Levin M, Palm F. Kidney hypoxia, attributable to increased oxygen consumption, induces nephropathy independently of hyperglycemia and oxidative stress.
Hypertension 2013;62:914–919.
56. Brenner BM, Cooper ME, de Zeeuw D, et al. RENAAL Study Investigators. Effects of losartan on renal and cardiovascular outcomes in patients with type 2 diabetes and nephropathy.
N Engl J Med 2001;345:861–869.
57. Lewis EJ, Hunsicker LG, Clarke WR, et al. Collaborative Study Group. Renoprotective effect of the angiotensin-receptor antagonist irbesartan in patients with nephropathy due to type 2 diabetes.
N Engl J Med 2001;345:851–860.
58. Izuhara Y, Nangaku M, Inagi R, et al. Renoprotective properties of angiotensin receptor blockers beyond blood pressure lowering.
J Am Soc Nephrol 2005;16:3631–3641.
59. Liao CY, Chung CH, Wu CC, et al. Protective effect of N-acetylcysteine on progression to end-stage renal disease: necessity for prospective clinical trial.
Eur J Intern Med 2017;44:67–73.
60. O’Sullivan S, Healy DA, Moloney MC, Grace PA, Walsh SR. The role of N--acetylcysteine in the prevention of contrast-induced nephropathy in patients undergoing peripheral angiography: a structured review and meta-analysis.
Angiology 2013;64:576–582.
61. Su X, Xie X, Liu L, et al. Comparative effectiveness of 12 treatment strategies for preventing contrast-induced acute kidney injury: a systematic review and Bayesian network meta-analysis.
Am J Kidney Dis 2017;69:69–77.
62. Small DM, Sanchez WY, Roy SF, et al. N-acetyl-cysteine increases cellular dysfunction in progressive chronic kidney damage after acute kidney injury by dampening endogenous antioxidant responses.
Am J Physiol Renal Physiol 2018;314:F956–F968.
63. Matsui T, Nakashima S, Nishino Y, et al. Dipeptidyl peptidase-4 deficiency protects against experimental diabetic nephropathy partly by blocking the advanced glycation end products-receptor axis.
Lab Invest 2015;95:525–533.
64. Mann JFE, Ørsted DD, Buse JB. Liraglutide and renal outcomes in type 2 diabetes.
N Engl J Med 2017;377:2197–2198.
65. Kodera R, Shikata K, Kataoka HU, et al. Glucagon-like peptide-1 receptor agonist ameliorates renal injury through its anti-inflammatory action without lowering blood glucose level in a rat model of type 1 diabetes.
Diabetologia 2011;54:965–978.
66. Fujita H, Morii T, Fujishima H, et al. The protective roles of GLP-1R signaling in diabetic nephropathy: possible mechanism and therapeutic potential.
Kidney Int 2014;85:579–589.
67. Tanaka S, Sugiura Y, Saito H, et al. Sodium-glucose cotrans-porter 2 inhibition normalizes glucose metabolism and suppresses oxidative stress in the kidneys of diabetic mice.
Kidney Int 2018;94:912–925.
68. Perkovic V, Jardine MJ, Neal B, et al. CREDENCE Trial Investigators. Canagliflozin and renal outcomes in type 2 diabetes and nephropathy.
N Engl J Med 2019;380:2295–2306.
69. Pergola PE, Raskin P, Toto RD, et al. BEAM Study Investigators. Bardoxolone methyl and kidney function in CKD with type 2 diabetes.
N Engl J Med 2011;365:327–336.
70. de Zeeuw D, Akizawa T, Audhya P, et al. BEACON Trial Investigators. Bardoxolone methyl in type 2 diabetes and stage 4 chronic kidney disease.
N Engl J Med 2013;369:2492–2503.
71. Chin MP, Reisman SA, Bakris GL, et al. Mechanisms contributing to adverse cardiovascular events in patients with type 2 diabetes mellitus and stage 4 chronic kidney disease treated with bardoxolone methyl.
Am J Nephrol 2014;39:499–508.
72. Camer D, Huang XF. The endothelin pathway: a protective or detrimental target of bardoxolone methyl on cardiac function in patients with advanced chronic kidney disease?
Am J Nephrol 2014;40:288–290.
73. Hirakawa Y, Nangaku M. Targeting oxidative stress in diabetic kidney disease: a novel drug in an old pathway.
Kidney Int 2018;94:1038–1039.
76. Perico L, Wyatt CM, Benigni A. A new BEACON of hope for the treatment of inflammation? The endogenous metabolite itaconate as an alternative activator of the KEAP1-Nrf2 system.
Kidney Int 2018;94:646–649.
77. Liles JT, Corkey BK, Notte GT, et al. ASK1 contributes to fibrosis and dysfunction in models of kidney disease.
J Clin Invest 2018;128:4485–4500.
78. Tesch GH, Ma FY, Han Y, Liles JT, Breckenridge DG, Nikolic-Paterson DJ. ASK1 inhibitor halts progression of diabetic nephropathy in Nos3-deficient mice.
Diabetes 2015;64:3903–3913.
79. Amos LA, Ma FY, Tesch GH, et al. ASK1 inhibitor treatment suppresses p38/JNK signalling with reduced kidney inflammation and fibrosis in rat crescentic glomerulonephritis.
J Cell Mol Med 2018;22:4522–4533.
80. Lin JH, Zhang JJ, Lin SL, Chertow GM. Design of a phase 2 clinical trial of an ASK1 inhibitor, GS-4997, in patients with diabetic kidney disease.
Nephron 2015;129:29–33.
81. de Zeeuw D, Renfurm RW, Bakris G, et al. Efficacy of a novel inhibitor of vascular adhesion protein-1 in reducing albuminuria in patients with diabetic kidney disease (ALBUM): a randomised, placebo-controlled, phase 2 trial.
Lancet Diabetes Endocrinol 2018;6:925–933.
82. Li HY, Lin HA, Nien FJ, et al. Serum vascular adhesion protein-1 predicts end-stage renal disease in patients with type 2 diabetes.
PLoS One 2016;11:e0147981.
83. Tanaka S, Tanaka T, Kawakami T, et al. Vascular adhesion protein-1 enhances neutrophil infiltration by generation of hydrogen peroxide in renal ischemia/reperfusion injury.
Kidney Int 2017;92:154–164.
84. Lahera V, Goicoechea M, de Vinuesa SG, et al. Oxidative stress in uremia: the role of anemia correction.
J Am Soc Nephrol 2006;17(12 Suppl 3):S174–S177.
85. Siems W, Carluccio F, Radenkovic S, Grune T, Hampl H. Oxidative stress in renal anemia of hemodialysis patients is mitigated by epoetin treatment.
Kidney Blood Press Res 2005;28:295–301.
86. Deng A, Arndt MA, Satriano J, et al. Renal protection in chronic kidney disease: hypoxia-inducible factor activation vs. angiotensin II blockade.
Am J Physiol Renal Physiol 2010;299:F1365–F1373.
87. Coyne DW, Goldsmith D, Macdougall IC. New options for the anemia of chronic kidney disease.
Kidney Int Suppl (2011) 2017;7:157–163.
88. Chen N, Qian J, Chen J, et al. Phase 2 studies of oral hypoxia-inducible factor prolyl hydroxylase inhibitor FG-4592 for treatment of anemia in China.
Nephrol Dial Transplant 2017;32:1373–1386.
89. Provenzano R, Besarab A, Sun CH, et al. Oral hypoxia-inducible factor prolyl hydroxylase inhibitor roxadustat (FG-4592) for the treatment of anemia in patients with CKD.
Clin J Am Soc Nephrol 2016;11:982–991.
90. Pergola PE, Spinowitz BS, Hartman CS, Maroni BJ, Haase VH. Vadadustat, a novel oral HIF stabilizer, provides effective anemia treatment in nondialysis-dependent chronic kidney disease.
Kidney Int 2016;90:1115–1122.
91. Martin ER, Smith MT, Maroni BJ, Zuraw QC, deGoma EM. Clinical trial of vadadustat in patients with anemia secondary to stage 3 or 4 chronic kidney disease.
Am J Nephrol 2017;45:380–388.
92. Kawakami T, Inagi R, Wada T, Tanaka T, Fujita T, Nangaku M. Indoxyl sulfate inhibits proliferation of human proximal tubular cells via endoplasmic reticulum stress.
Am J Physiol Renal Physiol 2010;299:F568–F576.
93. Chiang CK, Tanaka T, Inagi R, Fujita T, Nangaku M. Indoxyl sulfate, a representative uremic toxin, suppresses erythropoietin production in a HIF-dependent manner.
Lab Invest 2011;91:1564–1571.
94. Asai H, Hirata J, Hirano A, Hirai K, Seki S, Watanabe-Akanuma M. Activation of aryl hydrocarbon receptor mediates suppression of hypoxia-inducible factor-dependent erythropoietin expression by indoxyl sulfate.
Am J Physiol Cell Physiol 2016;310:C142–C150.
95. Wu IW, Hsu KH, Sun CY, Tsai CJ, Wu MS, Lee CC. Oral adsorbent AST-120 potentiates the effect of erythropoietin-stimulating agents on Stage 5 chronic kidney disease patients: a randomized crossover study.
Nephrol Dial Transplant 2014;29:1719–1727.